Bui Dinh, T., Oesterle, B. & Deneu, F.
1990
Premiers résultats sur la portance d’une sphère en rotation aux nombres de Reynolds intermédiaires. C. R. Acad. Sci. Paris II
311, 27–31.

Das, P., Sen, O., Jacobs, G. & Udaykumar, H. S.
2017
A sharp interface Cartesian grid method for viscous simulation of shocked particle-laden flows. Intl J. Comput. Fluid Dyn.
31, 269–291.

Dobson, J., Ooi, A. & Poon, E. K. W.
2014
The flow structures of a transversely rotating sphere at high rotation rates. Comput. Fluids
102, 170–181.

Eldred, K. M.1971 Acoustic loads generated by the propulsion system. *NASA Special Publication*. NASA SP-8072.

Fukuda, K., Tsutsumi, S., Shimizu, T., Takaki, R. & Ui, K.2011 Examination of sound suppression by water injection at lift-off of launch vehicles. *AIAA Paper* 2011–2814.

Giacobello, M., Ooi, A. & Balachandar, S.
2009
Wake structure of a transversely rotating sphere at moderate Reynolds numbers. J. Fluid Mech.
621, 103–130.

Gottlieb, S. & Shu, C.-W.
1998
Total variation diminishing Runge–Kutta schemes. Math. Comput.
67 (221), 73–85.

Ignatius, J. K., Sathiyavageeswaran, S. & Chakravarthy, S. R.
2014
Hot-flow simulation of aeroacoustics and suppression by water injection during rocket liftoff. AIAA J.
53 (1), 235–245.

Ishii, T., Tsutsumi, S., Ui, K., Tokudome, S., Ishii, Y., Wada, K. & Nakamura, S.
2012
Acoustic measurement of 1 : 42 scale booster and launch pad. In Proceedings of Meetings on Acoustics, vol. 18, 040009. Acoustical Society of America.

Johnson, T. A. & Patel, V. C.
1999
Flow past a sphere up to a Reynolds number of 300. J. Fluid Mech.
378, 19–70.

Kajishima, T.
2004
Influence of particle rotation on the interaction between particle clusters and particle-induced turbulence. Intl J. Heat Fluid Flow
25 (5), 721–728.

Kurose, R. & Komori, S.
1999
Drag and lift forces on a rotating sphere in a linear shear flow. J. Fluid Mech.
384, 183–206.

Mizuno, Y., Takahashi, S., Nonomura, T., Nagata, T. & Fukuda, K.
2015
A simple immersed boundary method for compressible flow simulation around a stationary and moving sphere. Math. Problems Engng
2015, 438086.

Nagata, T., Nonomura, T., Takahashi, S., Mizuno, Y. & Fukuda, K.
2016
Investigation on subsonic to supersonic flow around a sphere at low Reynolds number of between 50 and 300 by direct numerical simulation. Phys. Fluids
28 (5), 056101.

Nagata, T., Nonomura, T., Takahashi, S., Mizuno, Y. & Fukuda, K.
2018a
Direct numerical simulation of flow around a heated/cooled isolated sphere up to a Reynolds number of 300 under subsonic to supersonic conditions. Intl J. Heat Mass Transfer
120, 284–299.

Nagata, T., Nonomura, T., Takahashi, S., Mizuno, Y. & Fukuda, K.
2018b
Direct numerical simulation of flow past a sphere at a Reynolds number between 500 and 1000 in compressible flows. In Proceedings of 2018 AIAA Aerospace Science Meeting. *AIAA Paper* 2018-0381. American Institute of Aeronautics and Astronautics.

Niazmand, H. & Renksizbulut, M.
2003
Surface effects on transient three-dimensional flows around rotating spheres at moderate Reynolds numbers. Comput. Fluids
32 (10), 1405–1433.

Nonomura, T., Morizawa, S., Obayashi, S. & Fujii, K.
2014
Computational prediction of acoustic waves from a subscale rocket motor. Trans. JSASS Aerospace Tech. Japan
12 (ists29), Pe_11–Pe_17.

Nonomura, T., Terakado, D., Abe, Y. & Fujii, K.
2015
A new technique for freestream preservation of finite-difference WENO on curvilinear grid. Comput. Fluids
107, 242–255.

Pirozzoli, S.
2011
Stabilized non-dissipative approximations of Euler equations in generalized curvilinear coordinates. J. Comput. Phys.
230 (8), 2997–3014.

Poon, E. K. W., Ooi, A. S. H., Giacobello, M., Iaccarino, G. & Chung, D.
2014
Flow past a transversely rotating sphere at Reynolds numbers above the laminar regime. J. Fluid Mech.
759, 751–781.

Riahi, H., Meldi, M., Favier, J., Serre, E. & Goncalves, E.
2018
A pressure-corrected immersed boundary method for the numerical simulation of compressible flows. J. Comput. Phys.
374, 361–383.

Rubinow, S. I. & Keller, J. B.
1961
The transverse force on a spinning sphere moving in a viscous fluid. J. Fluid Mech.
44, 447–459.

Schneiders, L., Günther, C., Meinke, M. & Schröder, W.
2016
An efficient conservative cut-cell method for rigid bodies interacting with viscous compressible flows. J. Comput. Phys.
311, 62–86.

Shimada, T., Daimon, Y. & Sekino, N.2006 Computational fluid dynamics of multiphase flows in solid rocket motors. *JAXA Special Publication*. JAXA-SP-05-035E.

Sutherland, W.
1893
The viscosity of gases and molecular force. Phil. Mag. Series 5
36, 507–531.

Tanaka, T., Yamagata, K. & Tsuji, Y.
1990
Experiment on fluid forces on a rotating sphere and spheroid. In Proceedings of the 2nd KSME–JSME Fluids Engineering Conference, pp. 366–369. The Korean Society of Mechanical Engineers.

Terakado, D., Nagata, Y., Nonomura, T., Fujii, K. & Yamamoto, M.
2016
Computational analysis of compressible gas-particle-multiphase turbulent mixing layer in Euler–Euler formulation. Trans. JSASS Aerospace Tech. Japan
14 (ists30), Po_2_25–Po_2_31.

Teymourtash, A. R. & Salimipour, S. E.
2017
Compressibility effects on the flow past a rotating cylinder. Phys. Fluids
29 (1), 016101.

Tsutsumi, S., Ishii, T., Ui, K., Tokudome, S. & Wada, K.
2015
Study on acoustic prediction and reduction of Epsilon launch vehicle at liftoff. J. Spacecr. Rockets
52 (2), 350–361.

Volkov, A. N.
2011
Transitional flow of a rarefied gas over a spinning sphere. J. Fluid Mech.
683, 320–345.

Yee, H. C., Sandham, N. D. & Djomehri, M. J.
1999
Low-dissipative high-order shock-capturing methods using characteristic-based filters. J. Comput. Phys
150 (1), 199–238.

You, C. F., Qi, H. Y. & Xu, X. C.
2003
Lift force on rotating sphere at low Reynolds numbers and high rotational speeds. Acta Mechanica Sin.
19 (4), 300–307.