Skip to main content Accessibility help

A direct comparison of particle-resolved and point-particle methods in decaying turbulence

  • M. Mehrabadi (a1), J. A. K. Horwitz (a2), S. Subramaniam (a3) and A. Mani (a2)


We use particle-resolved direct numerical simulation (PR-DNS) as a model-free physics-based numerical approach to validate particle acceleration modelling in gas-solid suspensions. To isolate the effect of the particle acceleration model, we focus on point-particle direct numerical simulation (PP-DNS) of a collision-free dilute suspension with solid-phase volume fraction $\unicode[STIX]{x1D719}=0.001$ in a decaying isotropic turbulent particle-laden flow. The particle diameter $d_{p}$ in the suspension is chosen to be the same as the initial Kolmogorov length scale $\unicode[STIX]{x1D702}_{0}$ ( $d_{p}/\unicode[STIX]{x1D702}_{0}=1$ ) in order to overlap with the regime where PP-DNS is valid. We assess the point-particle acceleration model for two different particle Stokes numbers, $St_{\unicode[STIX]{x1D702}}=1$ and 100. For the high Stokes number case, the Stokes drag model for particle acceleration under-predicts the true particle acceleration. In addition, second moment quantities which play key roles in the physical evolution of the gas–solid suspension are not correctly captured. Considering finite Reynolds number corrections to the acceleration model improves the prediction of the particle acceleration probability density function and second moment statistics of the point-particle model compared with the particle-resolved simulation. We also find that accounting for the undisturbed fluid velocity in the acceleration model can be of greater importance than using the most appropriate acceleration model for a given physical problem.


Corresponding author

Email address for correspondence:


Hide All

Equally contributing first authors.



Hide All
Akiki, G., Jackson, T. L. & Balachandar, S. 2017a Pairwise interaction extended point-particle model for a random array of monodisperse spheres. J. Fluid Mech. 813, 882928.
Akiki, G., Moore, W. C. & Balachandar, S. 2017b Pairwise-interaction extended point-particle model for particle-laden flows. J. Comput. Phys. 351, 329357.
Bagchi, P. & Balachandar, S. 2003 Effect of turbulence on the drag and lift of a particle. Phys. Fluids 15 (11), 34963513.
Balachandar, S. & Eaton, J. K. 2010 Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42, 111133.
Balachandar, S. & Maxey, M. R. 1989 Methods for evaluating fluid velocities in spectral simulations of turbulence. J. Comput. Phys. 83, 96125.
Basset, A. B. 1888 A Treatise on Hydrodynamics: With Numerous Examples, vol. 2. Cambridge University Press.
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.
Batchelor, G. K. 1972 Sedimentation in a dilute dispersion of spheres. J. Fluid Mech. 52, 245268.
Batchelor, G. K. & Green, J. T. 1972 The hydrodynamic interaction of two small freely-moving spheres in a linear flow field. J. Fluid Mech. 56 (2), 375400.
Boivin, M., Simonin, O. & Squires, K. D. 1998 Direct numerical simulation of turbulence modulation by particles in isotropic turbulence. J. Fluid Mech. 275, 235263.
Bokkers, G. A., Annaland, M. V. S. & Kuipers, J. A. M. 2004 Mixing and segregation in a bidisperse gas–solid fluidised bed: a numerical and experimental study. Powder Technol. 140, 176186.
Boussinesq, J. 1885 Sur la résistance qu’oppose un liquide indéfini en repos, sans pesanteur, au mouvement varié d’une sphère solide qu’il mouille sur toute sa surface, quand les vitesses restent bien continues et assez faibles pour que leurs carrés et produits soient négligeables. C. R. Acad. Sci. Paris 100, 935937.
Burton, T. M. & Eaton, J. K. 2005 Fully resolved simulations of particle-turbulence interaction. J. Fluid Mech. 545, 67111.
Calzavarini, E., Volk, R., Bourgoin, M., Leveque, E., Pinton, J. F. & Toschi, F. 2009 Acceleration statistics of finite-sized particles in turbulent flow: the role of Faxén forces. J. Fluid Mech. 630, 179189.
Cate, A. T., Derksen, J. J., Portela, L. M. & van den Akker, H. E. A. 2004 Fully resolved simulations of colliding monodisperse spheres in forced isotropic turbulence. J. Fluid Mech. 519, 233271.
Chouippe, A. & Uhlmann, M. 2015 Forcing homogeneous turbulence in direct numerical simulation of particulate flow with interface resolution and gravity. Phys. Fluids 27 (12), 123301.
Clift, R., Grace, J. R. & Weber, M. E. 1978 Bubbles, Drops and Particles. Academic.
Coimbra, C. F. M. & Rangel, R. H. 1998 General solution of the particle momentum equation in unsteady Stokes flows. J. Fluid Mech. 370, 5372.
Corrsin, S. & Lumley, J. 1956 On the equation of motion for a particle in turbulent fluid. Appl. Sci. Res. A 6, 114116.
Cundall, P. A. & Strack, O. D. L. 1979 A discrete numerical model for granular assemblies. Geotechnique 29, 4765.
Daitche, A. 2015 On the role of the history force for inertial particles in turbulence. J. Fluid Mech. 782, 567593.
Drew, D. A. & Passman, S. L. 1998 Theory of Multicomponent Fluids. Springer.
Elghobashi, S. & Truesdell, G. C. 1992 Direct simulation of particle dispersion in a decaying isotropic turbulence. J. Fluid Mech. 242, 655700.
Elghobashi, S. E. & Truesdell, G. C. 1993 On the two-way interaction between homogeneous turbulence and dispersed solid particles. I: Turbulence modification. Phys. Fluids A 5, 17901801.
Fan, R., Marchisio, D. L. & Fox, R. O. 2004 Application of the direct quadrature method of moments to polydisperse gas–solid fluidized beds. Powder Technol. 139 (1), 720.
Faxén, V. H. 1922 Der widerstand gegen die bewegung einer starren kugel in einer zahen flussigkeit, die zwischen zwei parallelen ebenen wanden eingeschlossen ist. Ann. Phys. 373 (10), 89119.
Ferrante, A. & Elghobashi, S. 2003 On the physical mechanisms of two-way coupling in particle-laden isotropic turbulence. Phys. Fluids 15 (2), 315329.
Frankel, A., Pouransari, H., Coletti, F. & Mani, A. 2016 Settling of heated particles in homogeneous turbulence. J. Fluid Mech. 792, 869893.
Ganguli, S. & Lele, S. 2017 Importance of variable density and non-Boussinesq effects on the drag of spherical particles. In 70th Annual Meeting of the APS Division of Fluid Dynamics, Denver, CO. American Physical Society.
Gao, H., Li, H. & Wang, L.-P. 2013 Lattice Boltzmann simulation of turbulent flow laden with finite-size particles. Comput. Math. Appl. 65 (2), 194210.
Garg, R., Tenneti, S., Mohd-Yusof, J. & Subramaniam, S. 2011 Direct numerical simulation of gas–solids flow based on the immersed boundary method. In Computational Gas-Solids Flows and Reacting Systems: Theory, Methods and Practice (ed. Pannala, S., Syamlal, M. & O’Brien, T. J.), pp. 245276. IGI Global.
Gatignol, R. 1983 The Faxén formulae for a rigid sphere in an unsteady non-uniform stokes flow. Journal de mécanique théorique et appliquée 1, 143160.
Girifalco, L. A. 2000 Statistical Mechanics of Solids. Oxford University Press.
Goldschmidt, M. J. V., Link, J. M., Mellema, S. & Kuipers, J. A. M. 2003 Digital image analysis measurements of bed expansion and segregation dynamics in dense gas–solid fluidized beds. Powder Technol. 138, 135159.
Gualtieri, P., Picano, F., Sardina, G. & Casciola, C. M. 2015 Exact regularized point particle method for multiphase flows in the two-way coupling regime. J. Fluid Mech. 773, 520561.
Homann, H. & Bec, J. 2010 Finite-size effects in the dynamics of neutrally buoyant particles in turbulent flow. J. Fluid Mech. 651, 8191.
Horwitz, J. & Mani, A. 2015 Simulations of decaying turbulence laden with particles: how are statistics affected by two-way coupling numerical scheme? In 68th Annual Meeting of the APS Division of Fluid Dynamics, Boston, Massachusetts. American Physical Society.
Horwitz, J. A. K. & Mani, A. 2016 Accurate calculation of stokes drag for point-particle tracking in two-way coupled flows. J. Comput. Phys. 318, 85109.
Horwitz, J. A. K. & Mani, A. 2018 Correction scheme for point-particle models applied to a nonlinear drag law in simulations of particle-fluid interaction. Intl J. Multiphase Flow 101, 7484.
Horwitz, J. A. K., Rahmani, M., Geraci, G., Banko, A. J. & Mani, A. 2016 Two-way coupling effects in particle-laden turbulence: how particle-tracking scheme affects particle and fluid statistics. In 9th International Conference on Multiphase Flow, Firenze.
Ireland, P. J. & Desjardins, O. 2017 Improving particle drag predictions in euler-lagrange simulations with two-way coupling. J. Comput. Phys. 338, 405430.
Kidanemariam, A. G., Chan-Braun, C., Doychev, T. & Uhlmann, M. 2013 Direct numerical simulation of horizontal open channel flow with finite-size, heavy particles at low solid volume fraction. New J. Phys. 15 (2), 025031.
Kiger, K. T. & Pan, C. 2000 PIV technique for the simultaneous measurement of dilute two-phase flows. Trans. ASME J. Fluids Engng 122 (4), 811818.
Kim, J. & Moin, P. 1985 Application of a fractional-step method to incompressible Navier–Stokes equations. J. Comput. Phys. 59, 308323.
Kim, S. & Karrila, S. J. 2005 Microhydrodynamics: Principles and Selected Applications. Butterworth-Heinemann.
Koch, D. L. 1990 Kinetic theory for a monodisperse gas–solid suspension. Phys. Fluids A 2, 17111723.
Lee, S. L. & Durst, F. 1982 On the motion of particles in turbulent duct flows. Intl J. Multiphase Flow 8 (2), 125146.
Ling, Y., Parmar, M. & Balachandar, S. 2013 A scaling analysis of added-mass and history forces and their coupling in dispersed multiphase flows. Intl J. Multiphase Flow 57, 102114.
Lovalenti, P. M. & Brady, J. F. 1993 The hydrodynamic force on a rigid particle undergoing arbitrary time-dependent motion at small Reynolds number. J. Fluid Mech. 256, 561605.
Lucci, F., Ferrante, A. & Elghobashi, S. 2011 Is Stokes number an appropriate indicator for turbulence modulation by particles of Taylor-length-scale size? Phys. Fluids 23 (2), 025101.
Maxey, M. R. & Riley, J. J. 1983 Equation of motion for a small rigid sphere in a uniform flow. Phys. Fluids 26 (4), 883889.
Mehrabadi, M., Murphy, E. & Subramaniam, S. 2016a Development of a gas–solid drag law for clustered particles using particle-resolved direct numerical simulation. Chem. Engng Sci. 152, 199212.
Mehrabadi, M. & Subramaniam, S. 2017 Mechanism of kinetic energy transfer in homogeneous bidisperse gas–solid flow and its implications for segregation. Phys. Fluids 29, 020714.
Mehrabadi, M., Tenneti, S., Garg, R. & Subramaniam, S. 2015 Pseudo-turbulent gas-phase velocity fluctuations in homogeneous gas–solid flow: fixed particle assemblies and freely evolving suspensions. J. Fluid Mech. 770, 210246.
Mehrabadi, M., Tenneti, S. & Subramaniam, S. 2016b Importance of the fluid-particle drag model in predicting segregation in bidisperse gas–solid flow. Intl J. Multiphase Flow 86, 99114.
Mohd-Yusof, J.1996 Interaction of massive particles with turbulence. PhD thesis, Cornell University.
Naso, A. & Prosperetti, A. 2010 The interaction between a solid particle and a turbulent flow. New J. Phys. 12 (3), 033040.
Oakley, T. R., Loth, E. & Adrian, R. J. 1997 A two-phase cinematic PIV method for bubbly flows. Trans. ASME J. Fluids Engng 119 (3), 707712.
Olivieri, S., Picano, F., Sardina, G., Iudicone, D. & Brandt, L. 2014 The effect of the basset history force on particle clustering in homogeneous and isotropic turbulence. Phys. Fluids 26, 041704.
Ozel, A., de Mottaa, J. C. B., Abbas, M., Fedea, P., Masbernat, O., Vincent, S., Estivalezes, J. L. & Simonin, O. 2017 Particle resolved direct numerical simulation of a liquid–solid fluidized bed: comparison with experimental data. Intl J. Multiphase Flow 89, 228240.
Pai, M. G. & Subramaniam, S. 2009 A comprehensive probability density function formalism for multiphase flows. J. Fluid Mech. 628, 181228.
Parmar, M., Haselbacher, A. & Balachandar, S. 2012 Equation of motion for a sphere in non-uniform compressible flows. J. Fluid Mech. 699, 352375.
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.
Pouransari, H., Mortazavi, M. & Mani, A. 2015 Parallel variable-density particle-laden turbulence simulation. Annu. Res. Briefs 2015, 4354.
Reade, W. C. & Collins, L. R. 2000 Effect of preferential concentration on turbulent collision rates. Phys. Fluids 12 (10), 25302540.
Riley, J. J. & Patterson, G. S. 1974 Diffusion experiments with numerically integrated isotropic turbulence. Phys. Fluids 17 (2), 292297.
Rogallo, R. S.1981 Numerical experiments in homogeneous turbulence. NASA Tech. Rep. 81835.
Rogers, C. B. & Eaton, J. K. 1991 The effect of small particles on fluid turbulence in a flat plate, turbulent boundary layer in air. Phys. Fluids 3 (5), 928937.
Sato, Y., Hishida, K. & Maeda, M. 1996 Effect of dispersed phase on modification of turbulent flow in a wall jet. Trans. ASME J. Fluids Engng 118 (2), 307315.
Schneiders, L., Meinke, M. & Schroder, W. 2016 On the accuracy of Lagrangian point-mass models for heavy nonspherical particles in isotropic turbulence. Fuel 201, 214.
Squires, K. D. & Eaton, J. K. 1990 Particle response and turbulence modification in isotropic turbulence. Phys. Fluids A 2 (7), 292297.
Squires, K. D. & Eaton, J. K. 1991a Measurements of particle dispersion obtained from direct numerical simulations of isotropic turbulence. J. Fluid Mech. 226, 135.
Squires, K. D. & Eaton, J. K. 1991b Preferential concentration of particles by turbulence. Phys. Fluids A 3, 11691178.
Stimson, M. & Jeffrey, G. G. 1926 The motion of two spheres in a viscous fluid. Proc. R. Soc. Lond. A 111 (757), 110116.
Stokes, G. G. 1850 On the effect of the inertial friction of fluids on the motion of pendulums. Trans. Camb. Phil. Soc. 9, 186.
Subramaniam, S., Mehrabadi, M., Horwitz, J. & Mani, A. 2014 Developing improved lagrangian point particle models of gas–solid flow from particle-resolved direct numerical simulation. In Studying Turbulence Using Numerical Simulation Databases–XV, Proceedings of the CTR 2014 Summer Program, pp. 514. Center for Turbulence Research, Stanford University.
Sun, B., Tenneti, S. & Subramaniam, S. 2015 Modeling average gas–solid heat transfer using particle-resolved direct numerical simulation. Intl J. Heat Mass Transfer 86, 898913.
Sun, B., Tenneti, S., Subramaniam, S. & Koch, D. L. 2016 Pseudo-turbulent heat flux and average gas-phase conduction during gas–solid heat transfer: flow past random fixed particle assemblies. J. Fluid Mech. 798, 299349.
Sundaram, S. & Collins, L. R. 1996 Numerical considerations in simulating a turbulent suspension of finite-volume particles. J. Comput. Phys. 124, 337350.
Sundaram, S. & Collins, L. R. 1997 Collision statistics in an isotropic particle-laden turbulent suspension. Part 1. Direct numerical simulations. J. Fluid Mech. 335, 75109.
Sundaram, S. & Collins, L. R. 1999 A numerical study of the modulation of isotropic turbulence by suspended particles. J. Fluid Mech. 379, 105143.
Taneda, S. 1956 Experimental investigation of the wake behind a sphere at low Reynolds numbers. J. Phys. Soc. Japan 11 (10), 11041108.
Tenneti, S., Garg, R., Hrenya, C. M., Fox, R. O. & Subramaniam, S. 2010 Direct numerical simulation of gas–solid suspensions at moderate Reynolds number: quantifying the coupling between hydrodynamic forces and particle velocity fluctuations. Powder Technol. 203 (1), 5769.
Tenneti, S., Garg, R. & Subramaniam, S. 2011 Drag law for monodisperse gas–solid systems using particle-resolved direct numerical simulation of flow past fixed assemblies of spheres. Intl J. Multiphase Flow 37, 10721092.
Tenneti, S., Mehrabadi, M. & Subramaniam, S. 2016 Stochastic Lagrangian model for hydrodynamic acceleration of inertial particles in gas–solid suspensions. J. Fluid Mech. 788, 695729.
Tenneti, S. & Subramaniam, S. 2014 Particle-resolved direct numerical simulation for gas–solid flow model development. Annu. Rev. Fluid Mech. 46 (1), 199230.
Tenneti, S., Sun, B., Garg, R. & Subramaniam, S. 2013 Role of fluid heating in dense gas–solid flow as revealed by particle-resolved direct numerical simulation. Intl J. Heat Mass Transfer 58 (1), 471479.
Truesdell, G. C. & Elghobashi, S. 1994 On the two-way interaction between homogeneous turbulence and dispersed solid particles. II. Particle dispersion. Phys. Fluids 6 (3), 14051407.
Uhlmann, M. 2008 Interface-resolved direct numerical simulation of vertical particulate channel flow in the turbulent regime. Phys. Fluids 20 (5), 053305.
Wang, L.-P., Ayala, O., Gao, H., Andersen, C. & Mathews, K. L. 2014 Study of forced turbulence and its modulation by finite-size solid particles using the lattice Boltzmann approach. Comput. Maths Applics. 67 (2), 363380.
Wang, L.-P. & Maxey, M. R. 1993 Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence. Phys. Fluids 256, 2768.
Xu, Y. & Subramaniam, S. 2007 Consistent modeling of interphase turbulent kinetic energy transfer in particle-laden turbulent flows. Phys. Fluids 19 (8), 085101.
Xu, Y. & Subramaniam, S. 2010 Effect of particle clusters on carrier flow turbulence: A direct numerical simulation study. Flow Turbul. Combust. 85, 735761.
Yeung, P. K. & Pope, S. B. 1988 An algorithm for tracking fluid particles in numerical simulations of homogeneous turbulence. J. Comput. Phys. 79 (2), 373416.
Zhang, Z. & Prosperetti, A. 2005 A second–order method for three–dimensional particle simulation. J. Comput. Phys. 210 (1), 292324.
Zick, A. A. & Homsy, G. M. 1982 Stokes flow through periodic arrays of spheres. J. Fluid Mech. 115, 1326.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Related content

Powered by UNSILO

A direct comparison of particle-resolved and point-particle methods in decaying turbulence

  • M. Mehrabadi (a1), J. A. K. Horwitz (a2), S. Subramaniam (a3) and A. Mani (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.