We analyse how a succession of single bubbles extracts dissolved gas from a liquid solution while they grow and detach in a confinement induced by the presence of lateral walls. Like bubbles growing on a liquid-immersed unconfined surface, these bubbles absorb the dissolved gas in the liquid around them and hence deplete their surroundings. The supersaturation level,
$\unicode[STIX]{x1D701}$
, stands out as the main parameter which determines the diffusive bubble dynamics, both in the confined and unconfined scenarios. For slightly supersaturated solutions, the bubble evolution is rather similar for the two cases. We observe nonetheless mildly higher concentration gradients within confinement due to the lack of gas renewal. This causes a slightly enhancement of density-driven convection as compared to the unconfined case, which results in a higher mass transfer rate towards the bubble and a somewhat faster long-term gas depletion. For larger supersaturations, the onset of natural convection is inhibited by the presence of the confinement. Confinement promotes the gas mixing within the cavity as well. These two effects combined result in a slower depletion in the confined case as compared to the unconfined one. The two opposite behaviours for small and large supersaturation suggest that there must be a transition in between the two scenarios. The cross-over has been estimated to occur at
$\unicode[STIX]{x1D701}\approx 0.17$
. We propose a modified depletion model which accounts for the confined configuration and its effect on the effective area through which gas diffuses into the bubble. The model can accurately describe the experimental results and sheds more light on the origin of the depletion effect due to the successive bubble growth.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.
To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.