Skip to main content Accessibility help
×
Home

Deformation of a biconcave-discoid capsule in extensional flow and electric field

  • Sudip Das (a1), Shivraj D. Deshmukh (a1) and Rochish M. Thaokar (a1)

Abstract

Natural (red blood cells) and artificial biconcave-discoid-shaped capsules have immense biological (a cellular component of blood) and technological (as drug carrier) relevance, respectively. Their low reduced volume allows significant shape changes under external fields such as extensional flows (encountered at junctions and size-varying capillaries in biological flows) and electric fields (in applications such as electroporation and dielectrophoresis). This work demonstrates biconcave-discoid to capped-cylindrical and prolate-spheroid shape transitions of a capsule in uniaxial extensional flow as well as in DC and AC electric fields. The shape changes of a stress-free biconcave-discoid capsule in external fields are important in determining the momentum and mass transfer between the capsule and the medium fluid as well as dielectrophoresis and electroporation phenomena of a capsule in an electric field. The biconcave-discoid to capped-cylindrical/prolate-spheroid shape transition is demonstrated for both a capsule (with parameters relevant to drug delivery) as well as for a red blood cell (physiological conditions). However, significant differences are observed in this shape transition depending upon the applied external fields. In an extensional flow, the pressure-driven transition shows the equator being squeezed in and the poles being pulled out to deform into a capped cylinder at low capillary number and a prolate spheroid at high capillary number. On the other hand, in the transition driven by electric fields, the shoulders of the capsule seem to play a significant role in the dynamics. The shape transition in the electric fields depends upon the relative magnitude of the electric and the hydrodynamic response times, particularly relevant for the dynamics of red blood cells in physiological conditions. A new method of analysing the shape transition of red blood cells in AC electric fields is suggested, where a large separation of time scales is observed between the hydrodynamic and electric responses.

Copyright

Corresponding author

Email address for correspondence: rochish@che.iitb.ac.in

References

Hide All
Ashe, J. W., Bogen, D. K. & Takashima, S. 1988 Deformation of biological cells by electric fields: theoretical prediction of the deformed shape. Ferroelectrics 86, 311324.
Barthès-Biesel, D., Diaz, A. & Dhenin, E. 2002 Effect of constitutive laws for two-dimensional membranes on flow-induced capsule deformation. J. Fluid Mech. 460, 211222.
Beving, H., Eriksson, L. E. G., Davey, C. L. & Kell, D. B. 1994 Dielectric properties of human blood and erythrocytes at radio frequencies (0.2–10 MHz); dependence on cell volume fraction and medium composition. Eur. Biophys. J. 23 (3), 207215.
Champion, J. A., Katare, Y. K. & Mitragotri, S. 2007 Particle shape: a new design parameter for micro- and nanoscale drug delivery carriers. J. Control. Release 121 (1–2), 39.
Chang, S., Takashima, S. & Asakura, T. 1985 Volume and shape changes of human erythrocytes induced by electrical fields. J. Bioelectr. 4 (2), 301316.
Cordasco, D. & Bagchi, P. 2017 On the shape memory of red blood cells. Phys. Fluids 29 (4), 041901.
Cruz, J. M. & García-Diego, F. J. 1998 Dielectrophoretic motion of oblate spheroidal particles. measurements of motion of red blood cells using the Stokes method. J. Phys. D 31 (14), 17451751.
Das, S. & Thaokar, R. M. 2018a Large deformation electrohydrodynamics of a Skalak elastic capsule in ac electric field. Soft Matt. 14, 17191736.
Das, S. & Thaokar, R. M. 2018b Large-deformation electrohydrodynamics of an elastic capsule in a DC electric field. J. Fluid Mech. 841, 489520.
De Loubens, C., Deschamps, J., Boedec, G. & Leonetti, M. 2015 Stretching of capsules in an elongation flow, a route to constitutive law. J. Fluid Mech. 767, R3.
Decuzzi, P., Pasqualini, R., Arap, W. & Ferrari, M. 2008 Intravascular delivery of particulate systems: Does geometry really matter? Pharmaceut. Res. 26 (1), 235243.
Diaz, A., Pelekasis, N. & Barthès-Biesel, D. 2000 Transient response of a capsule subjected to varying flow conditions: Effect of internal fluid viscosity and membrane elasticity. Phys. Fluids 12 (5), 948957.
Du, E., Dao, M. & Suresh, S. 2014 Quantitative biomechanics of healthy and diseased human red blood cells using dielectrophoresis in a microfluidic system. Extreme Mech. Lett. 1, 3541.
Engelhardt, H. & Sackmann, E. 1988 On the measurement of shear elastic moduli and viscosities of erythrocyte plasma membranes by transient deformation in high frequency electric fields. Biophys. J. 54 (3), 495508.
Evans, E. & Fung, Y.-C. 1972 Improved measurements of the erythrocyte geometry. Microvasc. Res. 4 (4), 335347.
Evans, E. A. 1980 Minimum energy analysis of membrane deformation applied to pipet aspiration and surface adhesion of red blood cells. Biophys. J. 30, 265284.
Evans, E. A., Waugh, R. & Melnik, L. 1976 Elastic area compressibility modulus of red cell membrane. Biophys. J. 16 (2), 585595.
Fischer, T. M. 2004 Shape memory of human red blood cells. Biophys. J. 86 (5), 33043313.
Freund, J. B. 2014 Numerical simulation of flowing blood cells. Annu. Rev. Fluid Mech. 46 (1), 6795.
Friend, A., Finch, E. & Schwan, H. 1975 Low frequency electric field induced changes in the shape and motility of amoebas. Science 187, 357359.
Gass, G. V., Chernomordik, L. V. & Margolis, L. B. 1991 Local deformation of human red blood cells in high frequency electric field. Biochim. Biophys. Acta 1093 (2), 162167.
Grosse, C. & Schwan, H. P. 1992 Cellular membrane potentials induced by alternating fields. Biophys. J. 63 (6), 16321642.
Guckenberger, A. & Gekle, S. 2017 Theory and algorithms to compute Helfrich bending forces: A review. J. Phys.: Condens. Matter 29 (20), 203001.
Haidekker, M. A., Tsai, A. G., Brady, T., Stevens, H. Y., Frangos, J. A., Theodorakis, E. & Intaglietta, M. 2002 A novel approach to blood plasma viscosity measurement using fluorescent molecular rotors. Am. J. Physiol. 282 (5), H1609H1614.
Helfrich, W. & Deuling, H. J. 1975 Macroscopic features. d) Biological systems: some theoretical shapes of red blood cells. J. de Phys. Colloques 36 (C1), 327329.
Henon, Y., Sheard, G. J. & Fouras, A. 2014 Erythrocyte deformation in a microfluidic cross-slot channel. RSC Adv. 4, 3607936088.
Hu, W. F., Kim, Y. & Lai, M.-C. 2014 An immersed boundary method for simulating the dynamics of three-dimensional axisymmetric vesicles in Navier–Stokes flows. J. Comput. Phys. 257 (Part A), 670686.
Joshi, R. P. & Hu, Q. 2012 Role of electropores on membrane blebbinga model energy-based analysis. J. Appl. Phys. 112 (6), 064703.
Joshi, R. P., Hu, Q., Schoenbach, K. H. & Beebe, S. J. 2002 Simulations of electroporation dynamics and shape deformations in biological cells subjected to high voltage pulses. IEEE Trans. Plasma Sci. 30 (4), 15361546.
Karyappa, R. B., Deshmukh, S. D. & Thaokar, R. M. 2014 Deformation of an elastic capsule in a uniform electric field. Phys. Fluids 26 (12), 122108.
Kononenko, V. L. & Shimkus, J. K. 2000 Stationary deformations of erythrocytes by high-frequency electric field. Bioelectrochemistry 52 (2), 187196.
Kononenko, V. L. & Shimkus, J. K. 2002 Transient dielectro-deformations of erythrocyte governed by time variation of cell ionic state. Bioelectrochemistry 55 (1), 97100.
Kononenko, V. L. 2002 Dielectro-deformations and flicker of erythrocytes: fundamental aspects of medical diagnostics applications. Proc. SPIE 4707, 134143.
Kozlovskaya, V., Alexander, J. F., Wang, Y., Kuncewicz, T., Liu, X., Godin, B. & Kharlampieva, E. 2014 Internalization of red blood cell-mimicking hydrogel capsules with ph-triggered shape responses. ACS Nano 8 (6), 57255737.
Krueger, M. & Thom, F. 1997 Deformability and stability of erythrocytes in high-frequency electric fields down to subzero temperatures. Biophys. J. 73 (5), 26532666.
Kwak, S. & Pozrikidis, C. 2001 Effect of membrane bending stiffness on the axisymmetric deformation of capsules in uniaxial extensional flow. Phys. Fluids 13 (5), 12341242.
Lac, E., Morel, A. & Barthès-Biesel, D. 2007 Hydrodynamic interaction between two identical capsules in simple shear flow. J. Fluid Mech. 573, 149169.
Lee, S. S., Yim, Y., Ahn, K. H. & Lee, S. J. 2009a Extensional flow-based assessment of red blood cell deformability using hyperbolic converging microchannel. Biomedical Microdevices 11 (5), 10211027.
Lee, S.-Y., Ferrari, M. & Decuzzi, P. 2009b Shaping nano-/micro-particles for enhanced vascular interaction in laminar flows. Nanotechnology 20 (49), 495101.
Levant, M. & Steinberg, V. 2016 Intermediate regime and a phase diagram of red blood cell dynamics in a linear flow. Phys. Rev. E 94, 062412.
McConnell, L. C., Vlahovska, P. M. & Miksis, M. J. 2015 Vesicle dynamics in uniform electric fields: squaring and breathing. Soft Matt. 11, 48404846.
Merkel, T. J., Jones, S. W., Herlihy, K. P., Kersey, F. R., Shields, A. R., Napier, M., Luft, J. C., Wu, H., Zamboni, W. C., Wang, A. Z., Bear, J. E. & DeSimone, J. M. 2011 Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles. Proc. Natl Acad. Sci. USA 108 (2), 586591.
Mohandas, N. & Evans, E. 1994 Mechanical properties of the red cell membrane in relation to molecular structure and genetic defects. Annu. Rev. Biophys. Biomol. Struct. 23 (1), 787818.
Pozrikidis, C. 1990 The axisymmetric deformation of a red blood cell in uniaxial straining Stokes flow. J. Fluid Mech. 216, 231254.
Pozrikidis, C. 1992 Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge University Press.
Pozrikidis, C. 2003a Modeling and Simulation of Capsules and Biological Cells. Chapman & HALL/CRC.
Pozrikidis, C. 2003b Numerical simulation of the flow-induced deformation of red blood cells. Ann. Biomed. Engng 31 (10), 11941205.
Pozrikidis, C. 2005 Axisymmetric motion of a file of red blood cells through capillaries. Phys. Fluids 17 (3), 031503.
Rallison, J. M. & Acrivos, A. 1978 A numerical study of the deformation and burst of a viscous drop in an extensional flow. J. Fluid Mech. 89, 191200.
Scheurich, P., Zimmermann, U., Mischel, M. & Lamprecht, I. 1980 Membrane fusion and deformation of red blood cells by electric fields. Z. Naturforsch. C 35 (11–12), 10811085.
Sebastián, J. L., Mun̄oz, S., Sancho, M. & Miranda, J. M. 2006 Analysis of the electric field induced forces in erythrocyte membrane pores using a realistic cell model. Phys. Med. Biol. 51 (23), 62136224.
Secomb, T. W. 2017 Blood flow in the microcirculation. Annu. Rev. Fluid Mech. 49 (1), 443461.
She, S., Li, Q., Shan, B., Tong, W. & Gao, C. 2013 Fabrication of red-blood-cell-like polyelectrolyte microcapsules and their deformation and recovery behavior through a microcapillary. Adv. Mater. 25 (40), 58145818.
She, S., Yu, D., Han, X., Tong, W., Mao, Z. & Gao, C. 2014 Fabrication of biconcave discoidal silica capsules and their uptake behavior by smooth muscle cells. J. Colloid Interface Sci. 426, 124130.
Skalak, R., Tozeren, A., Zarda, R. P. & Chien, S. 1973 Strain energy function of red blood cell membranes. Biophys. J. 13 (3), 245264.
Sukhorukov, V. L., Mussauer, H. & Zimmermann, U. 1998 The effect of electrical deformation forces on the electropermeabilization of erythrocyte membranes in low- and high-conductivity media. J. Membr. Biol. 163 (3), 235245.
Thom, F. 2009 Mechanical properties of the human red blood cell membrane at - 15 °C. Cryobiology 59 (1), 2427.
Thom, F. & Gollek, H. 2006 Calculation of mechanical properties of human red cells based on electrically induced deformation experiments. J. Electrostat. 64 (1), 5361.
Trefethen, L. N.1996 Finite difference and spectral methods for ordinary and partial differential equations. Chapter 7 in unpublished text https://people.maths.ox.ac.uk/trefethen/pdetext.html.
Ur, A. & Lushbaugh, C. C. 1968 Some effects of electrical fields on red blood cells with remarks on electronic red cell sizing. Brit. J. Haematology 15 (6), 527538.
Venkataraman, S., Hedrick, J. L., Ong, Z. Y., Yang, C., Ee, P. L. R., Hammond, P. T. & Yang, Y. Y. 2011 The effects of polymeric nanostructure shape on drug delivery. Adv. Drug Deliv. Rev. 63 (14–15), 12281246.
Vlahovska, P. M., Podgorski, T. & Misbah, C. 2009 Vesicles and red blood cells in flow: From individual dynamics to rheology. C. R. Phys. 10 (8), 775789.
Wolf, M., Gulich, R., Lunkenheimer, P. & Loidl, A. 2011 Broadband dielectric spectroscopy on human blood. Biochimica et Biophysica Acta (BBA) - General Subjects 1810 (8), 727740.
Yaginuma, T., Oliveira, M. S. N., Lima, R., Ishikawa, T. & Yamaguchi, T. 2013 Human red blood cell behavior under homogeneous extensional flow in a hyperbolic-shaped microchannel. Biomicrofluidics 7 (5), 054110.
Yazdani, A. Z. K., Kalluri, R. M. & Bagchi, P. 2011 Tank-treading and tumbling frequencies of capsules and red blood cells. Phys. Rev. E 83 (4 Pt 2), 046305.
Yen, J.-H., Chen, S.-F., Chern, M.-K. & Lu, P.-C. 2015 The effects of extensional stress on red blood cell hemolysis. Biomed. Engng: Applics. Basis Commun. 27 (05), 1550042.
Zhou, H. & Pozrikidis, C. 1995 Deformation of liquid capsules with incompressible interfaces in simple shear flow. J. Fluid Mech. 283, 175200.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Deformation of a biconcave-discoid capsule in extensional flow and electric field

  • Sudip Das (a1), Shivraj D. Deshmukh (a1) and Rochish M. Thaokar (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed