Skip to main content Accessibility help
×
Home

Coupled oscillations of deformable spherical-cap droplets. Part 1. Inviscid motions

  • J. B. Bostwick (a1) (a2) and P. H. Steen (a2) (a3)

Abstract

A spherical drop is constrained by a solid support arranged as a latitudinal belt. This belt support splits the drop into two deformable spherical caps. The edges of the support are given by lower and upper latitudes yielding a ‘spherical belt’ of prescribed extent and position: a two-parameter family of constraints. This is a belt-constrained Rayleigh drop. In this paper we study the linear oscillations of the two coupled spherical-cap surfaces in the inviscid case, and the viscous case is studied in Part 2 (Bostwick & Steen, J. Fluid Mech., vol. 714, 2013, pp. 336–360), restricting to deformations symmetric about the axis of constraint symmetry. The integro-differential boundary-value problem governing the interface deformation is formulated as a functional eigenvalue problem on linear operators and reduced to a truncated set of algebraic equations using a Rayleigh–Ritz procedure on a constrained function space. This formalism allows mode shapes with different contact angles at the edges of the solid support, as observed in experiment, and readily generalizes to accommodate viscous motions (Part 2). Eigenvalues are mapped in the plane of constraints to reveal where near-multiplicities occur. The full problem is then approximated as two coupled harmonic oscillators by introducing a volume-exchange constraint. The approximation yields eigenvalue crossings and allows post-identification of mass and spring constants for the oscillators.

Copyright

Corresponding author

Email address for correspondence: phs7@cornell.edu

References

Hide All
Arfken, G. B. & Weber, H. J. 2001 Mathematical Methods for Physicists. Harcourt Academic Press.
Basaran, O. & DePaoli, D. 1994 Nonlinear oscillations of pendant drops. Phys. Fluids 6, 29232943.
Bauer, H. F. & Chiba, M. 2004 Oscillations of captured spherical drop of frictionless liquid. J. Sound Vib. 274, 725746.
Bauer, H. F. & Chiba, M. 2005 Oscillations of captured spherical drop of viscous liquid. J. Sound Vib. 285, 5171.
Beck, J. L. 1972 Convection in a box of porous material saturated with fluid. Phys. Fluids 15, 13771383.
Bhandar, A. S. & Steen, P. H. 2005 Liquid-bridge mediated droplet switch: a tristable capillary system. Phys. Fluids 17, 127107.
Bisch, C., Lasek, A. & Rodot, H. 1982 Compartement hydrodynamique de volumes liquides spheriques semi-libres en apesanteur simulee. J. Mec. Theor. Appl. 1, 165184.
Bostwick, J. B. & Steen, P. H. 2009 Capillary oscillations of a constrained liquid drop. Phys. Fluids 21, 032108.
Bostwick, J. B. & Steen, P. H. 2010 Stability of constrained cylindrical interfaces and the torus lift of Plateau-Rayleigh. J. Fluid Mech. 647, 201219.
Bostwick, J. B. & Steen, P. H. 2013 Coupled oscillations of deformable spherical-cap droplets. Part 2. Viscous motions. J. Fluid Mech 714, 336360.
Brunet, P., Eggers, J. & Deegan, R. D. 2009 Motion of a drop driven by substrate vibrations. Eur. Phys. J. Special Topics 166, 1114.
Charlson, G. S & Sani, R. L 1970 Thermoconvective instability in a bounded cylindrical fluid layer. Intl. J. Heat Mass Transfe 13, 14791496.
Courant, R. & Hilbert, D. 1953 Methods of Mathematical Physics, Vol. I. Wiley-Interscience.
Daniel, S., Sircar, S., Gliem, J. & Chaudhury, M. K. 2004 Racheting motion of liquid drops on gradient surfaces. Langmuir 20, 40854092.
DePaoli, W. D., Feng, J. Q., Basaran, O. A. & Scott, T. C. 1995 Hysteresis in forced oscillations of pendant drops. Phys. Fluids 7, 11811183.
Fayzrakhmanova, I. S. & Straube, A. V. 2009 Stick-slip dynamics of an oscillated sessile drop. Phys. Fluids 21, 072104.
Gañan, A. & Barerro, A. 1990 Free oscillations of liquid captive drops. Microgravity Sci. Technol. 3, 7086.
Hammack, J. L. & Henderson, D. M. 1993 Resonant interactions among surface water waves. Annu. Rev. Fluid Mech. 25, 5597.
Hirsa, A. H., Lopez, C. A., Laytin, M. A., Vogel, M. J. & Steen, P. H. 2005 Low-dissipation capillary switches at small scales. Appl. Phys. Lett. 86, 014106.
James, A., Smith, M. K. & Glezer, A. 2003a Vibration-induced drop atomization and the numerical simulation of low-frequency single-droplet ejection. J. Fluid Mech. 476, 2962.
James, A., Vukasinovic, B., Smith, M. K. & Glezer, A. 2003b Vibration-induced drop atomization and bursting. J. Fluid Mech. 476, 128.
Lopez, C. A. & Hirsa, A. H. 2008 Fast focusing using a pinned-contact liquid lens. Nat. Photonics 2 9, 610613.
Lopez, C. A., Lee, C. C. & Hirsa, A. H. 2005 Electrochemically activated adaptive liquid lens. Appl. Phys. Lett. 87, 134102.
Lyubimov, D. V., Lyubimova, T. P. & Shklyaev, S. V. 2004 Non-axisymmetric oscillations of a hemispheric drop. Fluid Dyn. 39, 851862.
Lyubimov, D. V., Lyubimova, T. P. & Shklyaev, S. V. 2006 Behavior of a drop on an oscillating solid plate. Phys. Fluids 18, 012101.
Malouin, B. A., Vogel, M. J. & Hirsa, A. H. 2010 Electromagnetic control of coupled droplets. Appl. Phys. Lett. 96, 214104.
Noblin, X., Buguin, A. & Brochard-Wyart, F. 2004 Vibrated sessile drops: transition between pinned and mobile contact lines. Eur. Phys. J. E 14, 395404.
Noblin, X., Buguin, A. & Brochard-Wyart, F. 2005 Triplon modes of puddles. Phys. Rev. Lett. 94, 166102.
Noblin, X., Kofman, R. & Celestini, F. 2009 Ratchet-like motion of a shaken drop. Phys. Rev. Lett. 19, 194504.
Olles, J. D., Vogel, M. J., Malouin, B. A. & Hirsa, A. H. 2011 Axisymmetric oscillation modes of a double droplet system. Optics Express 19, 1939919406.
Prosperetti, A 2012 Linear oscillations of constrained drops, bubbles and plane liquid surfaces. Phys. Fluids 24, 032109.
Ramalingam, S. K. & Basaran, O. A. 2010 Axisymmetric oscillation modes of a double droplet system. Phys. Fluids 22, 112111.
Ramalingam, S., Ramkrishna, D. & Basaran, O. A. 2012 Free vibrations of a spherical drop constrained at an azimuth. Phys. Fluids 24 (8), 082102.
Rayleigh, Lord 1879 On the capillary phenomenon of jets. Proc. R. Soc. Lond. 29, 7197.
Rodot, H. A. & Bisch, C. 1984 Oscillations de volumes liquides semi-libres en microgravite-experience es326 dans spacelab 1. 5th European Symp. on Material Sciences under Microgravity, Paper ESA SP-222, pp. 23–29.
Segel, L. A. 1987 Mathematics Applied to Continuum Mechanics. Dover.
Strani, M. & Sabetta, F. 1984 Free vibrations of a drop in partial contact with a solid support. J. Fluid Mech. 141, 233247.
Strani, M. & Sabetta, F. 1988 Viscous oscillations of a supported drop in an immiscible fluid. J. Fluid Mech. 189, 397421.
Theisen, E. A., Vogel, M. J., Hirsa, C. A., Lopez, A. H. & Steen, P. H. 2007 Capillary dynamics of coupled spherical-cap droplets. J. Fluid Mech. 580, 495505.
Trinh, E. & Wang, T. G. 1982 Large-amplitude free and driven drop-shape oscillation: experimental results. J. Fluid Mech. 122, 315338.
Trinh, E., Zwern, A. & Wang, T. G. 1982 An experimental study of small-amplitude drop oscillations in immiscible liquid system. J. Fluid Mech. 115, 453474.
Tsamopoulos, J. A. & Brown, R. A. 1983 Nonlinear oscillations of inviscid drops and bubbles. J. Fluid Mech. 127, 519537.
Vogel, M. J., Ehrhard, P. & Steen, P. H. 2005 The electroosmotic droplet switch: Countering capillarity with electrokinetics. Proc. Natl Acad. Sci. 102, 1197411979.
Vogel, M. J. & Steen, P. H. 2010 Capillarity-based switchable adhesion. Proc. Natl Acad. Sci. 107, 33773381.
Vukasinovic, B., Smith, M. K. & Glezer, A. 2007 Dynamics of a sessile drop in forced vibration. J. Fluid Mech. 587, 395423.
Wang, T. G., Anilkumar, A. V. & Lee, C. P. 1996 Oscillations of liquid drops: results from usml-1 experiments in space. J. Fluid Mech. 308, 114.
Wilkes, E. & Basaran, O. 1999 Hysteretic response of supported drops during forced oscillations. J. Fluid Mech. 393, 333356.
Wilkes, E. & Basaran, O. 2001 Drop ejection from an oscillating rod. J. Colloid Interface Sci. 242, 180201.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Related content

Powered by UNSILO

Coupled oscillations of deformable spherical-cap droplets. Part 1. Inviscid motions

  • J. B. Bostwick (a1) (a2) and P. H. Steen (a2) (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.