Skip to main content Accessibility help
×
Home

Continuum modelling and simulation of granular flows through their many phases

  • Sachith Dunatunga (a1) and Ken Kamrin (a1)

Abstract

We propose and numerically implement a constitutive framework for granular media that allows the material to traverse through its many common phases during the flow process. When dense, the material is treated as a pressure-sensitive elasto-viscoplastic solid obeying a yield criterion and a plastic flow rule given by the ${\it\mu}(I)$ inertial rheology of granular materials. When the free volume exceeds a critical level, the material is deemed to separate and is treated as disconnected, stress-free media. A material point method (MPM) procedure is written for the simulation of this model and many demonstrations are provided in different geometries, which highlight the ability of the numerical model to handle transitions through dense and disconnected states. By using the MPM framework, extremely large strains and nonlinear deformations, which are common in granular flows, are representable. The method is verified numerically and its physical predictions are validated against many known experimental phenomena, such as Beverloo’s scaling in silo flows, jointed power-law scaling of the run-out distance in granular-column-collapse problems, and various known behaviours in inclined chute flows.

Copyright

Corresponding author

Email address for correspondence: kkamrin@mit.edu

References

Hide All
Abe, K., Soga, K. & Bandara, S. 2013 Material point method for coupled hydromechanical problems. Geoenviron. Engng 140 (3), 116.
Andersen, S. & Andersen, L.2009 Analysis of stress updates in the material-point method. In Proceedings of the 22nd Nordic Seminar on Computational Mechanics, pp. 129–134. Aalborg.
Andersen, S. & Andersen, L. 2010 Analysis of spatial interpolation in the material-point method. Comput. Struct. 88 (7–8), 506518.
Andersen, S. & Andersen, L.2013 Post-processing in the material-point method. Tech. Rep. Aalborg: Aalborg University.
Balmforth, N. J. & Kerswell, R. R. 2005 Granular collapse in two dimensions. J. Fluid Mech. 538, 399428.
Bandara, S. & Soga, K. 2015 Coupling of soil deformation and pore fluid flow using Material Point Method. Comput. Geotech. 63, 199214.
Bardenhagen, S. G. & Kober, E. M. 2004 The generalized interpolation material point method. Comput. Model. Engng Sci. 5 (6), 477495.
Beverloo, W. A., Leniger, H. A. & van de Velde, J. 1961 The flow of granular solids through orifices. Chem. Engng Sci. 15 (3–4), 260269.
Brackbill, J., Kothe, D. & Ruppel, H. 1988 FLIP: a low-dissipation, particle-in-cell method for fluid flow. Comput. Phys. Commun. 48, 2538.
Brockbank, R., Huntley, J. M. & Ball, R. C. 1997 Contact force distribution beneath a three-dimensional granular pile. J. Phys. II 7 (10), 15211532.
Buzzi, O., Pedroso, D. M. & Giacomini, A. 2008 Caveats on the implementation of the generalized material point method. Comput. Model. Engng Sci. 1 (1), 121.
Cundall, P. A. & Strack, O. D. L. 1979 A discrete numerical model for granular assemblies. Geotechnique 29 (1), 4765.
da Cruz, F., Emam, S., Prochnow, M., Roux, J. & Chevoir, F. 2005 Rheophysics of dense granular materials: discrete simulation of plane shear flows. Phys. Rev. E 72 (2), 021309.
Dormand, J. & Prince, P. 1980 A family of embedded Runge–Kutta formulae. J. Comput. Appl. Maths 6 (1), 1926.
Geng, J., Longhi, E., Behringer, R. & Howell, D. 2001 Memory in two-dimensional heap experiments. Phys. Rev. E 64 (6), 060301.
Gurtin, M. E., Fried, E. & Anand, L. 2010 The Mechanics and Thermodynamics of Continua. Cambridge University Press.
Harlow, F. H. 1964 The particle-in-cell computing method for fluid dynamics. Meth. Comput. Phys. 3 (3), 319343.
Henann, D. L. & Kamrin, K. 2013 A predictive, size-dependent continuum model for dense granular flows. Proc. Natl Acad. Sci. USA 110 (17), 67306735.
Henann, D. L. & Kamrin, K. 2014 Continuum modeling of secondary rheology in dense granular materials. Phys. Rev. Lett. 113 (17), 178001.
Jenkins, J. T. & Berzi, D. 2012 Kinetic theory applied to inclined flows. Granul. Matt. 14, 7984.
Jiang, Y. & Liu, M. 2003 Granular elasticity without the Coulomb condition. Phys. Rev. Lett. 91 (14), 144301.
Jones, E., Oliphant, T. & Peterson, P.2001 SciPy: Open source scientific tools for Python. URL: http://www.scipy.org/ (visited on 07/28/2014).
Jop, P., Forterre, Y. & Pouliquen, O. 2006 A constitutive law for dense granular flows. Nature 441 (7094), 727730.
Kahan, W.2004 On the cost of floating-point computation without extra-precise arithmetic. URL: http://www.cs.berkeley.edu/∼wkahan/Qdrtcs.pdf (visited on 10/06/2014).
Kamojjala, K., Brannon, R., Sadeghirad, A. & Guilkey, J. 2013 Verification tests in solid mechanics. Engng Comput 31 (2), 193213.
Kamrin, K. 2010 Nonlinear elasto-plastic model for dense granular flow. Intl J. Plast. 26 (2), 167188.
Kamrin, K. & Henann, D. 2015 Nonlocal modeling of granular flows down inclines. Soft Matter 11 (1), 179185.
Kamrin, K. & Koval, G. 2012 Nonlocal constitutive relation for steady granular flow. Phys. Rev. Lett. 108 (17), 178301+.
Koval, G., Roux, J., Corfdir, A. & Chevoir, F. 2009 Annular shear of cohesionless granular materials: from the inertial to quasistatic regime. Phys. Rev. E 79 (2), 021306.
Lacaze, L. & Kerswell, R. 2009 Axisymmetric granular collapse: a transient 3D flow test of viscoplasticity. Phys. Rev. Lett. 102 (10), 108305.
Lagrée, P.-Y., Staron, L. & Popinet, S. 2011 The granular column collapse as a continuum: validity of a two-dimensional Navier–Stokes model with a ${\it\mu}(\text{I})$ -rheology. J. Fluid Mech. 686, 378408.
Lube, G., Huppert, H., Sparks, R. & Hallworth, M. 2004 Axisymmetric collapses of granular columns. J. Fluid Mech. 508, 175199.
Lube, G., Huppert, H., Sparks, R. & Freundt, A. 2005 Collapses of two-dimensional granular columns. Phys. Rev. E 72 (4), 110.
Ma, S., Zhang, X., Lian, Y. & Zhou, X. 2009 Simulation of high explosive explosion using adaptive material point method. 39 2, 101123.
Mast, C. M., Mackenzie-Helnwein, P., Arduino, P., Miller, G. R. & Shin, W. 2012 Mitigating kinematic locking in the material point method. J. Comput. Phys. 231 (16), 53515373.
Mast, C. M., Arduino, P., Mackenzie-Helnwein, P. & Miller, G. R. 2015 Simulating granular column collapse using the Material Point Method. Acta Geotech. 10, 101116.
Nair, A. & Roy, S. 2012 Implicit time integration in the generalized interpolation material point method for finite deformation hyperelasticity. Mech. Adv. Mater. Struct. 19 (6), 465473.
Nedderman, R. M. 1992 Statics and Kinematics of Granular Materials. Cambridge University Press.
Pouliquen, O. & Forterre, Y. 2009 A non-local rheology for dense granular flows. Phil. Trans. R. Soc. A 367 (1909), 50915107.
Rashid, M. 1993 Incremental kinematics for finite element applications. Intl J. Numer. Meth. Engng 36 (April), 39373956.
Sadeghirad, A., Brannon, R. M. & Burghardt, J. 2011 A convected particle domain interpolation technique to extend applicability of the material point method for problems involving massive deformations. Intl J. Numer. Meth. Engng 86 (12), 14351456.
Sadeghirad, A., Brannon, R. M. & Guilkey, J. E. 2013 Second-order convected particle domain interpolation (CPDI2) with enrichment for weak discontinuities at material interfaces. Intl J. Numer. Meth. Engng 95 (11), 928952.
Schofield, A. & Wroth, P. 1968 Critical State Soil Mechanics. McGraw-Hill.
Silbert, L., Ertaş, D., Grest, G., Halsey, T. & Levine, D. 2001 Granular flow down an inclined plane: Bagnold scaling and rheology. Phys. Rev. E 64 (5), 051302.
Silbert, L. E., Landry, J. W. & Grest, G. S. 2003 Granular flow down a rough inclined plane: transition between thin and thick piles. Phys. Fluids 15 (1), 110.
Staron, L. & Hinch, E. J. 2005 Study of the collapse of granular columns using DEM numerical simulation. J. Fluid Mech. 545, 127; arXiv:0501022 [physics].
Staron, L., Lagrée, P.-Y. & Popinet, S. 2012 The granular silo as a continuum plastic flow: The hour-glass vs the clepsydra. Phys. Fluids 24 (10), 103301.
Staron, L., Lagrée, P.-Y. & Popinet, S. 2014 Continuum simulation of the discharge of the granular silo: a validation test for the ${\it\mu}(\text{I})$ visco-plastic flow law. Eur. Phys. J. E 37 (1), 5.
Sulsky, D., Chen, Z. & Schreyer, H. L. 1994 A particle method for history-dependent materials. Comput. Meth. Appl. Mech. Engng 118 (1–2), 179196.
Weber, G. G., Lush, A. M., Zavaliangos, A. & Anand, L. 1990 An objective time-integration procedure for isotropic rate-independent and rate-dependent elastic-plastic constitutive equations. Intl J. Plast. 6 (6), 701744.
Więckowski, Z. 2003 Modelling of silo discharge and filling problems by the material point method. Task Quart. 4 (4), 701721.
Więckowski, Z. 2004 The material point method in large strain engineering problems. Comput. Meth. Appl. Mech. Engng 193 (39–41), 44174438.
Więckowski, Z. & Kowalska-Kubsik, I. 2011 Non-local approach in modelling of granular flow by the material point method. In Computer Methods in Mechanics, p. 069.
Zhang, D. Z., Ma, X. & Giguere, P. T. 2011 Material point method enhanced by modified gradient of shape function. J. Comput. Phys. 230 (16), 63796398.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed