Skip to main content Accessibility help

A conditional space–time POD formalism for intermittent and rare events: example of acoustic bursts in turbulent jets

  • Oliver T. Schmidt (a1) and Peter J. Schmid (a2)


We present a conditional space–time proper orthogonal decomposition (POD) formulation that is tailored to the eduction of the average, rare or intermittent events from an ensemble of realizations of a fluid process. By construction, the resulting spatio-temporal modes are coherent in space and over a predefined finite time horizon, and optimally capture the variance, or energy of the ensemble. For the example of intermittent acoustic radiation from a turbulent jet, we introduce a conditional expectation operator that focuses on the loudest events, as measured by a pressure probe in the far field and contained in the tail of the pressure signal’s probability distribution. Applied to high-fidelity simulation data, the method identifies a statistically significant ‘prototype’, or average acoustic burst event that is tracked over time. Most notably, the burst event can be traced back to its precursor, which opens up the possibility of prediction of an imminent burst. We furthermore investigate the mechanism underlying the prototypical burst event using linear stability theory and find that its structure and evolution are accurately predicted by optimal transient growth theory. The jet-noise problem demonstrates that the conditional space–time POD formulation applies even for systems with probability distributions that are not heavy-tailed, i.e. for systems in which events overlap and occur in rapid succession.


Corresponding author

Email address for correspondence:


Hide All
Adrian, R. J. 1975 On the role of conditional averages in turbulence theory. In Proceedings of the Fourth Biennial Symposium on Turbulence in Liquids, pp. 323332. University of Missouri–Rolla.
Aubert, A. & McKinley, R. 2011 Measurements of jet noise aboard us navy aircraft carriers. In AIAA Centennial of Naval Aviation Forum, p. 6947.
Aubry, N. 1991 On the hidden beauty of the proper orthogonal decomposition. Theor. Comput. Fluid Dyn. 2 (5), 339352.10.1007/BF00271473
Avila, K., Moxey, D., de Lozar, A., Avila, M., Barkley, D. & Hof, B. 2011 The onset of turbulence in pipe flow. Science 333 (6039), 192196.10.1126/science.1203223
Beneddine, S., Sipp, D., Arnault, A., Dandois, J. & Lesshafft, L. 2016 Conditions for validity of mean flow stability analysis. J. Fluid Mech. 798, 485504.
Bonnet, J. P., Cole, D. R., Delville, J., Glauser, M. N. & Ukeiley, L. S. 1994 Stochastic estimation and proper orthogonal decomposition: complementary techniques for identifying structure. Exp. Fluids 17 (5), 307314.10.1007/BF01874409
Brès, G. A., Ham, F. E., Nichols, J. W. & Lele, S. K. 2017 Unstructured large-eddy simulations of supersonic jets. AIAA J. 55 (4), 11641184.10.2514/1.J055084
Cavalieri, A. V. G., Jordan, P., Agarwal, A. & Gervais, Y. 2011 Jittering wave-packet models for subsonic jet noise. J. Sound Vib. 330 (18), 44744492.10.1016/j.jsv.2011.04.007
Chu, B.-T. 1965 On the energy transfer to small disturbances in fluid flow (Part I). Acta Mechanica 1 (3), 215234.10.1007/BF01387235
Dysthe, K., Krogstad, H. E & Müller, P. 2008 Oceanic rogue waves. Annu. Rev. Fluid Mech. 40, 287310.10.1146/annurev.fluid.40.111406.102203
Ewing, D. & Citriniti, J. H. 1999 Examination of a LSE/POD complementary technique using single and multi-time information in the axisymmetric shear layer. In IUTAM Symposium on Simulation and Identification of Organized Structures in Flows, pp. 375384. Springer.10.1007/978-94-011-4601-2_33
Farrell, B. F. & Ioannou, P. J. 1996 Generalized stability theory. Part I: autonomous operators. J. Atmos. Sci. 53 (14), 20252040.10.1175/1520-0469(1996)053<2025:GSTPIA>2.0.CO;2
Gordeyev, S. V. & Thomas, F. O. 2013 A temporal proper decomposition (TPOD) for closed-loop flow control. Exp. Fluids 54 (3), 1477.10.1007/s00348-013-1477-7
Guj, G., Carley, M., Camussi, R. & Ragni, A. 2003 Acoustic identification of coherent structures in a turbulent jet. J. Sound Vib. 259 (5), 10371065.10.1006/jsvi.2002.5130
Hack, M. J. P. & Moin, P. 2018 Coherent instability in wall-bounded shear. J. Fluid Mech. 844, 917955.10.1017/jfm.2018.202
Jordan, P. & Colonius, T. 2013 Wave packets and turbulent jet noise. Annu. Rev. Fluid Mech. 45, 173195.10.1146/annurev-fluid-011212-140756
Juvé, D., Sunyach, M. & Comte-Bellot, G. 1980 Intermittency of the noise emission in subsonic cold jets. J. Sound Vib. 71 (3), 319332.10.1016/0022-460X(80)90416-2
Kearney-Fischer, M., Sinha, A. & Samimy, M. 2013 Intermittent nature of subsonic jet noise. AIAA J. 51 (5), 11421155.10.2514/1.J051930
Kerswell, R. R. 2005 Recent progress in understanding the transition to turbulence in a pipe. Nonlinearity 18 (6), R17.10.1088/0951-7715/18/6/R01
Kœnig, M., Cavalieri, A. V. G., Jordan, P., Delville, J., Gervais, Y. & Papamoschou, D. 2013 Farfield filtering and source imaging of subsonic jet noise. J. Sound Vib. 332 (18), 40674088.10.1016/j.jsv.2013.02.040
Lumley, J. L. 1970 Stochastic Tools in Turbulence. Academic Press.
Mohamad, M. A. & Sapsis, T. P. 2015 Probabilistic description of extreme events in intermittently unstable dynamical systems excited by correlated stochastic processes. SIAM/ASA J. Uncertainty Quantification 3 (1), 709736.10.1137/140978235
Noack, B. R., Morzynski, M. & Tadmor, G. 2011 Reduced-Order Modelling for Flow Control, 1st edn. Springer.10.1007/978-3-7091-0758-4
Pope, S. B. 2000 Turbulent Flows, 1st edn. Cambridge University Press.10.1017/CBO9780511840531
Schmid, P. J. 2007 Nonmodal stability theory. Annu. Rev. Fluid Mech. 39, 129162.10.1146/annurev.fluid.38.050304.092139
Schmid, P. J. & Henningson, D. S. 2001 Stability and Transition in Shear Flows, 1st edn. Springer.10.1007/978-1-4613-0185-1
Schmidt, O. T., Hosseini, S. M., Rist, U., Hanifi, A. & Henningson, D. S. 2015 Optimal wavepackets in streamwise corner flow. J. Fluid Mech. 766, 405435.10.1017/jfm.2015.18
Schmidt, O. T., Towne, A., Rigas, G., Colonius, T. & Brès, G. A. 2018 Spectral analysis of jet turbulence. J. Fluid Mech. 855, 953982.10.1017/jfm.2018.675
Sirovich, L. 1987 Turbulence and the dynamics of coherent structures. Q. Appl. Maths 45 (3), 561571.10.1090/qam/910462
Tam, C. K. W. & Hu, F. Q. 1989 On the three families of instability waves of high-speed jets. J. Fluid Mech. 201, 447483.10.1017/S002211208900100X
Tinney, C. E., Coiffet, F., Delville, J., Hall, A. M., Jordan, P. & Glauser, M. N. 2006 On spectral linear stochastic estimation. Exp. Fluids 41 (5), 763775.10.1007/s00348-006-0199-5
Towne, A., Cavalieri, A. V. G., Jordan, P., Colonius, T., Schmidt, O. T., Jaunet, V. & Brès, G. A. 2017 Acoustic resonance in the potential core of subsonic jets. J. Fluid Mech. 825, 11131152.10.1017/jfm.2017.346
Towne, A., Schmidt, O. T. & Colonius, T. 2018 Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis. J. Fluid Mech. 847, 821867.10.1017/jfm.2018.283
Trefethen, L. N., Trefethen, A. E., Reddy, S. C. & Driscoll, T. A. 1993 Hydrodynamic stability without eigenvalues. Science 261 (5121), 578584.10.1126/science.261.5121.578
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *

JFM classification

Type Description Title

Schmidt and Schmid supplementary movie
Side-by-side comparison of the leading conditional space-time POD mode and the optimal transient growth solution (see figures 4 and 5 for details).

 Video (1.1 MB)
1.1 MB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed