Skip to main content Accessibility help
×
Home

The compressible vortex pair

  • S. D. Heister (a1) (a2), J. M. Mcdonough (a1) (a3), A. R. Karagozian (a1) and D. W. Jenkins (a1)

Abstract

A numerical solution for the flow field associated with a compressible pair of counter-rotating vortices is developed. The compressible, two-dimensional potential equation is solved utilizing the numerical method of Osher et al. (1985) for flow regions in which a non-zero density exists. Close to the vortex centres, vacuum ‘cores’ develop owing to the existence of a maximum achievable flow speed in a compressible flow field. A special treatment is required to represent these vacuum cores. Typical streamline patterns and core boundaries are obtained for upstream Mach numbers as high as 0.3, and the formation of weak shocks, predicted by Moore & Pullin (1987), is observed.

Copyright

References

Hide All
Anderson, J. A.: 1982 Modern Compressible Flow with Historical Perspective. McGraw-Hall.
Brown, S. N.: 1965 The compressible, inviscid leading-edge vortex. J. Fluid Mech. 22, 1732.
Garabedian, P.: 1964 Partial Differential Equations. John Wiley.
Hackbusch, W.: 1985 Multi-Grid Methods and Applications. Springer.
Heister, S. D.: 1988 Transverse jets in compressible crossflows. Ph.D. thesis, University of California, Los Angeles.
Kucheman, D.: 1978 The Aerodynamic Design of Aircraft. Pergamon.
Mack, L. M.: 1959 The compressible viscous, heat-conducting vortex. Progress Rep. 20–382. Jet Propulsion Laboratory, Pasadena, CA.
Maxwell, A. R.: 1971 The Hodograph Equations: An Introduction to The Theory of Plane Transonic Flow. Hafner.
Moore, D. W.: 1985 The effect of compressibility on the speed of propagation of a vortex ring. Proc. R. Soc. Lond. A 397, 8797.
Moore, D. W. & Pullin, D. I., 1987 The compressible vortex pair. J. Fluid Mech. 185, 171204.
Osher, S., Hafez, M. & Whitlow, W., 1985 Entropy condition satisfying approximations for the full potential equations of transonic fluid flow. Maths Comput. 44, 129.
Ringleb, F.: 1940 Exakte Losungen der Defferentialgleichungen einer adiabatischen Gasstromung. Z. Angew. Math. Mech. 20, 185198.
Shankar, V., Ide, H., Gorski, J. & Osher, S., 1987 A fast, time-accurate, unsteady full potential scheme. AIAA J. 25, 230238.
Shapiro, A. H.: 1953 The Dynamics and Thermodynamics of Compressible Fluid Flow, vol. 2. Ronald.
Thompson, J. F., Wardi, Z. U. A. & Mastin, C. W. 1985 Numerical Grid Generation, Foundations and Applications. Elsevier/North-Holland.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

The compressible vortex pair

  • S. D. Heister (a1) (a2), J. M. Mcdonough (a1) (a3), A. R. Karagozian (a1) and D. W. Jenkins (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed