Skip to main content Accessibility help

Comparison between passive scalar and velocity fields in a turbulent cylinder wake

  • J. G. Chen (a1), T. M. Zhou (a2), R. A. Antonia (a3) and Y. Zhou (a1)


This work compares the enstrophy with the scalar dissipation rate, as well as the passive scalar variance with the turbulent kinetic energy, in the presence of coherent Kármán vortices in the intermediate wake of a circular cylinder. Measurements are made at $x/d=10$ , 20 and 40, where $x$ is the streamwise distance from the cylinder axis and $d$ is the cylinder diameter, with a Reynolds number of $2.5\times 10^{3}$ based on the cylinder diameter and the free-stream velocity. A probe consisting of eight hot wires (four X-wires) and four cold wires is used to measure simultaneously the three components of the fluctuating velocity and vorticity vectors, as well as the fluctuating temperature gradient vector at nominally the same point in the plane of the mean shear. It is found that the enstrophy and scalar dissipation spectra collapse approximately at all wavenumbers except around the Kármán vortex street wavenumber for $x/d\geqslant 20$ . The spectral similarity between the streamwise velocity fluctuation $u$ and the passive scalar $\unicode[STIX]{x1D703}$ is better than that between the velocity fluctuation vector $\boldsymbol{q}$ and $\unicode[STIX]{x1D703}$ . This is closely related to the highly organized lateral velocity fluctuation $v$ in this flow. The present observations are fully consistent with the expectation that small scales of the velocity and temperature fields are more likely to exhibit a close relationship than scales associated with the bulk of the turbulent energy or scalar variance. The variation across the wake of the time scale ratio between scalar and velocity fields is significantly smaller than that of the turbulent Prandtl number.


Corresponding author

Email address for correspondence:


Hide All
Abe, H. & Antonia, R. A. 2009 Near-wall similarity between velocity and scalar fluctuations in a turbulent channel flow. Phys. Fluids 21, 25109.
Abe, H., Antonia, R. A. & Kawamura, H. 2009 Correlation between small-scale velocity and scalar fluctuations in a turbulent channel flow. J. Fluid Mech. 627, 132.
Antonia, R. A., Abe, H. & Kawamura, H. 2009 Analogy between velocity and scalar fields in a turbulent channel flow. J. Fluid Mech. 628, 241268.
Antonia, R. A. & Browne, L. 1986 Anisotropy of the temperature dissipation in a turbulent wake. J. Fluid Mech. 163, 393403.
Antonia, R. A., Browne, L. W. B., Bisset, D. K. & Fulachier, L. 1987 A description of the organized motion in the turbulent far wake of a cylinder at low Reynolds number. J. Fluid Mech. 184, 423444.
Antonia, R. A. & Burattini, P. 2006 Approach to the 4/5 law in homogeneous isotropic turbulence. J. Fluid Mech. 550, 175184.
Antonia, R. A., Djenidi, L. & Danaila, L. 2014 Collapse of the turbulent dissipative range on Kolmogorov scales. Phys. Fluids 26, 45105.
Antonia, R. A. & Kim, J. 1991 Similarity between turbulent kinetic energy and temperature spectra in the near-wall region. Phys. Fluids A 3, 989991.
Antonia, R. A., Kim, J. & Browne, L. 1991 Some characteristics of small-scale turbulence in a turbulent duct flow. J. Fluid Mech. 233, 369388.
Antonia, R. A. & Mi, J. 1993 Corrections for velocity and temperature derivatives in turbulent flows. Exp. Fluids 14, 203208.
Antonia, R. A. & Mi, J. 1998 Approach towards self-preservation of turbulent cylinder and screen wakes. Exp. Therm. Fluid Sci. 17, 277284.
Antonia, R. A., Ould-Rouis, M., Anselmet, F. & Zhu, Y. 1997 Analogy between predictions of Kolmogorov and Yaglom. J. Fluid Mech. 332, 395409.
Antonia, R. A. & Rajagopalan, S. 1990 Performance of lateral vorticity probe in a turbulent wake. Exp. Fluids 9, 119120.
Antonia, R. A., Zhou, Y. & Matsumura, M. 1993 Spectral characteristics of momentum and heat transfer in the turbulent wake of a circular cylinder. Exp. Therm. Fluid Sci. 6, 371375.
Béguier, C., Dekeyser, I. & Launder, B. E. 1978 Ratio of scalar and velocity dissipation time scales in shear flow turbulence. Phys. Fluids 21, 307310.
Berajeklian, A. & Mydlarski, L. 2011 Simultaneous velocity–temperature measurements in the heated wake of a cylinder with implications for the modeling of turbulent passive scalars. Phys. Fluids 23, 55107.
Bisset, D. K., Antonia, R. A. & Browne, L. 1990 Spatial organization of large structures in the turbulent far wake of a cylinder. J. Fluid Mech. 218, 439461.
Chassaing, P., Antonia, R. A., Anselmet, F., Joly, L. & Sarkar, S. 2002 Variable Density Fluid Turbulence. Springer.
Chen, J. G., Zhou, Y., Zhou, T. M. & Antonia, R. A. 2016 Three-dimensional vorticity, momentum and heat transport in a turbulent cylinder wake. J. Fluid Mech. 809, 135167.
Chua, L. P. & Antonia, R. A. 1991 Spectral analogy between temperature variance and turbulent energy in a circular jet. Intl Commun. Heat Mass Transfer 18, 569579.
Corrsin, S. 1953 Remarks on turbulent heat transfer: an account of some features of the phenomenon in fully turbulent regions. In Proceedings of the Iowa Thermodynamics Symposium, pp. 530. State University of Iowa.
Fulachier, L. & Antonia, R. A. 1983 Spectral relationships between velocity and temperature fluctuations in turbulent shear flows. Phys. Fluids 26, 21052108.
Fulachier, L. & Antonia, R. A. 1984 Spectral analogy between temperature and velocity fluctuations in several turbulent flows. Intl J. Heat Mass Transfer 27, 987997.
Fulachier, L. & Dumas, R. 1971 Spectral distributions of thermal fluctuations in a turbulent boundary layer. AGARD-CP Turbulent Shear Flow 93, 4.
Fulachier, L. & Dumas, R. 1976 Spectral analogy between temperature and velocity fluctuations in a turbulent boundary layer. J. Fluid Mech. 77, 257277.
Hussain, A. & Hayakawa, M. 1987 Eduction of large-scale organized structures in a turbulent plane wake. J. Fluid Mech. 180, 193229.
Kolmogorov, A. N. 1941 The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR 30, 301305.
Lefeuvre, N., Thiesset, F., Djenidi, L. & Antonia, R. A. 2014 Statistics of the turbulent kinetic energy dissipation rate and its surrogates in a square cylinder wake flow. Phys. Fluids 26, 95104.
Marasli, B., Nguyen, P. & Wallace, J. M. 1993 A calibration technique for multiple-sensor hot-wire probes and its application to vorticity measurements in the wake of a circular cylinder. Exp. Fluids 15, 209218.
Matsumura, M. & Antonia, R. A. 1993 Momentum and heat transport in the turbulent intermediate wake of a circular cylinder. J. Fluid Mech. 250, 651668.
Mi, J. & Antonia, R. A. 1994 Temperature distribution within vortices in the wake of a cylinder. Intl J. Heat Mass Transfer 37, 10481050.
Newman, G. R., Launder, B. E. & Lumley, J. L. 1981 Modelling the behaviour of homogeneous scalar turbulence. J. Fluid Mech. 111, 217232.
Obukhov, A. M. 1949 Structure of the temperature field in turbulent flows. Izv. Akad. Nauk SSSR Geogr. Geophys. 13, 5862.
Pope, S. B. 2001 Turbulent Flows. Cambridge University Press.
Reynolds, A. J. 1976 The variation of turbulent Prandtl and Schmidt numbers in wakes and jets. Intl J. Heat Mass Transfer 19, 757764.
Shraiman, B. I. & Siggia, E. D. 2000 Scalar turbulence. Nature 405, 639646.
Sreenivasan, K. R. 1991 On local isotropy of passive scalars in turbulent shear flows. Proc. R. Soc. Lond. A 434, 165182.
Tennekes, H. & Lumley, J. L. 1972 A First Course in Turbulence. MIT Press.
Thiesset, F., Danaila, L. & Antonia, R. A. 2013 Dynamical effect of the total strain induced by the coherent motion on local isotropy in a wake. J. Fluid Mech. 720, 393423.
Thiesset, F., Danaila, L. & Antonia, R. A. 2014 Dynamical interactions between the coherent motion and small scales in a cylinder wake. J. Fluid Mech. 749, 201226.
Tomkins, C. D. & Adrian, R. J. 2003 Spanwise structure and scale growth in turbulent boundary layers. J. Fluid Mech. 490, 3774.
Wallace, J. M. & Foss, J. F. 1995 The measurement of vorticity in turbulent flows. Annu. Rev. Fluid Mech. 27, 469514.
Warhaft, Z. 2000 Passive scalars in turbulent flows. Annu. Rev. Fluid Mech. 32, 203240.
Warhaft, Z. & Lumley, J. L. 1978 An experimental study of the decay of temperature fluctuations in grid-generated turbulence. J. Fluid Mech. 88, 659684.
Watanabe, T. & Gotoh, T. 2004 Statistics of a passive scalar in homogeneous turbulence. New J. Phys. 6, 40.
Yeh, T. T. & Atta, C. W. 1973 Spectral transfer of scalar and velocity fields in heated-grid turbulence. J. Fluid Mech. 58, 233261.
Yiu, M. W., Zhou, Y., Zhou, T. & Cheng, L. 2004 Reynolds number effects on three-dimensional vorticity in a turbulent wake. AIAA J. 42, 10091016.
Zhou, Y. & Antonia, R. A. 1992 Convection velocity measurements in a cylinder wake. Exp. Fluids 13, 6370.
Zhu, Y. & Antonia, R. A. 1996 Spatial resolution of a 4-X-wire vorticity probe. Meas. Sci. Technol. 7, 1492.
Zhou, T., Antonia, R. A. & Chua, L. 2002a Performance of a probe for measuring turbulent energy and temperature dissipation rates. Exp. Fluids 33, 334345.
Zhou, T., Antonia, R. A., Danaila, L. & Anselmet, F. 2000a Transport equations for the mean energy and temperature dissipation rates in grid turbulence. Exp. Fluids 28, 143151.
Zhou, T., Razali, S. M., Zhou, Y., Chua, L. P. & Cheng, L. 2009 Dependence of the wake on inclination of a stationary cylinder. Exp. Fluids 46, 11251138.
Zhou, Y., So, R. M. C., Liu, M. H. & Zhang, H. J. 2000b Complex turbulent wakes generated by two and three side-by-side cylinders. Intl J. Heat Fluid Flow 21, 125133.
Zhou, Y. & Yiu, M. W. 2006 Flow structure, momentum and heat transport in a two-tandem-cylinder wake. J. Fluid Mech. 548, 1748.
Zhou, Y., Zhang, H. J. & Yiu, M. W. 2002b The turbulent wake of two side-by-side circular cylinders. J. Fluid Mech. 458, 303332.
Zhou, T., Zhou, Y., Yiu, M. W. & Chua, L. P. 2003 Three-dimensional vorticity in a turbulent cylinder wake. Exp. Fluids 35, 459471.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed