Skip to main content Accessibility help
×
Home

Coherent structure in a turbulent jet via a vector implementation of the proper orthogonal decomposition

  • M. O. IQBAL (a1) and F. O. THOMAS (a1)

Abstract

The coherent structure in the near-field of an axisymmetric turbulent jet at a Reynolds number of 3.8 × 105 and Mach number of 0.3 is experimentally characterized by a vector implementation of the proper orthogonal decomposition (POD). The POD eigenfunctions and associated eigenvalues are extracted at several selected streamwise locations in the initial region. The focus on the near-field is motivated by its importance in numerous technical applications. Results show a rapid energy convergence with POD mode number. Examination of the relative energy contained in the combined azimuthal and radial components of the POD modes reveals that it is comparable to that in the streamwise component. The streamwise evolution of the eigenvalue spectra is characterized by a remarkable variation in the azimuthal mode number energy distribution, leading to the dominance of azimuthal mode m = 1 beyond the end of the jet core. In contrast, a scalar implementation using only the streamwise component shows the dominance of mode m = 2 which is consistent with previous scalar implementations of the POD. For a given azimuthal mode number, the eigenvalue spectra exhibit a broad peak which occurs at a constant value of Strouhal number based on local shear layer momentum thickness and local jet maximum velocity. The phase information required for a local reconstruction of the jet structure is obtained by projecting the POD eigenmodes onto instantaneous realizations of the flow at fixed streamwise locations. The instantaneous realizations are obtained by utilizing cross-stream arrays of multi-sensor probes in conjunction with linear stochastic estimation (LSE). Results clearly show the local dynamic behaviour of each component of the jet structure.

Copyright

References

Hide All
Adrian, R. J. 1977 On the role of conditional averages in turbulent theory. In Turbulence in Liquids: Proc, 4th Biennial Symposium on Turbulence in Liquids (ed. Patteson, G. & Zakin, J.), pp. 322332. Science Press, Princeton.
Adrian, R. J. 1979 Conditional eddies in isotropic turbulence. Phys. Fluids 22, 20652070.
Adrian, R. J. 1994 Stochastic estimation of conditional structure: A review. Appl. Sci. Res. 53, 291303.
Arndt, R. E. A., Long, D. F. & Glauser, M. N. 1997 The proper orthogonal decomposition of pressure fluctuations surrounding a turbulent jet. J. Fluid Mech. 340, 133.
Aubry, N., Holmes, P., Lumley, J. L. & Stone, E. 1988 The dynamics of coherent structures in the wall region of the turbulent shear layer. J. Fluid Mech. 192, 115175.
Bendat, S. J. & Piersol, A. G. 1986 Random Data, 2nd Edn. Wiley Interscience.
Berkooz, G., Holmes, P. & Lumley, J. L. 1993 The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech., 25, 539575.
Bonnet, J. P., Cole, D. R., Delville, J., Glauser, M. N. & Ukeiley, L. S. 1994 Stochastic estimation and proper orthogonal decomposition: complementary techniques for identifying structure. Exps. Fluids 17, 307314.
Bonnet, J. P. & Delville, J. 1996 General concepts on structure identification. In Eddy Structure Identification (ed. Bonnet, J. P.). Springer.
Bonnet, J. P. & Delville, J. 2001 Review of coherent structures in turbulent free shear flows and their possible influence on computational methods. Flow, Turbulence Combust. 66, 333353.
Bradshaw, P., Ferriss, D. H. & Johnson, R. F. 1964 Turbulence in the noise-producing region of a circular jet. J. Fluid Mech. 18, 591624.
Chu, H. C. 1993 An experimental study of nonlinear wave coupling and energy transfer characterizing the transition of a planar jet shear layer. PhD dissertation, University of Notre Dame.
Citriniti, J. H. & George, W. K. 2000 Reconstruction of the global velocity field in the axisymmetric mixing layer utilizing the POD. J. Fluid Mech. 418, 137166.
Cohen, J. & Wygnanski, I. 1987 The evolution of instabilities in the axisymmetric jet. Part 1. The linear growth of the disurbances near the nozzle. J. Fuid Mech. 176, 191219.
Crow, S. C. & Champagne, F. H. 1971 Orderly structure in jet turbulence. J. Fluid Mech. 48, 547591.
Davies, P. O. A. L., Ko, N. M. W. & Bose, B. 1967 The local pressure field of turbulent jets. Aero. Res. Counc. Paper 989.
Delville, J., Ukeiley, L. S., Cordier, L., Bonnet, J. P. & Glauser, M. N. 1999 Examination of large scale structures in a plane mixing layer. Part 1. Proper orthogonal decmposition. J. Fluid Mech. 391, 91122.
Drubka, R. E. 1981 Instabilities in the near field of turbulent jets and their dependence on initial conditions. PhD Dissertation, Illinois Institute of Technology, Chicago.
Gamard, S., George, W. K. & Jung, D. 2004 Downstream evolution of the most energetic modes in a turbulent axisymmetric jet at high Reynolds number. Part 2. The far-field region. J. Fluid Mech. 514, 173204.
Glauser, M. N. 1987 Coherent structures in axisymmetric turbulent jet mixing layer. PhD Dissertation, SUNY, Buffalo.
Glauser, M. N. & George, W. K. 1987 Orthogonal decomposition of the axisymmetric jet mixing layer including azimuthal dependence. In Advances in Turbulence (ed. Comte-Bellot, J. C. et al. ) Springer.
Glauser, M. N. & George, W. K. 1992 Application of multipoint meassurements for flow characterization. Expl Thermal Fluid Sci. 5, 617632.
Glauser, M. N., Leib, S. J. & George, W. K. 1987 Coherent structures in axisymmetric turbulent jet mixing layer. In Turbulent Shear Flows 5 (ed. Durst, J. C. et al. ). Springer.
Gordeyev, S. V. & Thomas, F. O. 2000 Coherent structure in turbulent planar jet. Part 1. Extraction of POD eigenmodes and their self-similarity. J. Fluid Mech. 414, 145194.
Gordeyev, S. V. & Thomas, F. O. 2002 Coherent structure in turbulent planar jet. Part 2. Structural topology via POD eigenmode projection. J. Fluid Mech. 460, 349380.
Gutmark, E. & Ho, C. M. 1983 Preferred modes and the spreading rates of jets. Phys. Fluids 26, 29322938.
Gutmark, E. & Wygnanski, I. 1976 The planar turbulent jet. J. Fluid Mech. 73, 465495.
Ho, C. M. & Huang, L. S. 1982 Subharmonics and vortex merging in mixing layers. J. Fluid Mech. 119, 443473.
Holmes, P., Lumley, J. L. & Berkooz, G. 1996 Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge University Press.
Hussain, A. K. M. F. 1986 Coherent structures and turbulence. J. Fluid Mech. 173, 303356.
Hussein, H. J., Capp, S. P. & George, W. K. 1994 Velocity measurements in a high-Reynolds-number, momentum conserving, axisymmetric, turbulent jet. J. Fluid Mech. 258, 3175.
Iqbal, M. O. 2006 Coherent structure in a turbulent axisymmetric jet via a vector implementation of the proper orthogonal decomposition. PhD Dissertation, University of Notre Dame, Notre Dame, IN.
Jeong, J. & Hussain, A. K. M. F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.
Jung, D., Gamard, S. & George, W. K. 2004 Downstream evolution of the most energetic modes in a turbulent axisymmetric jet at high Reynolds number. Part 1. The near-field region. J. Fluid Mech. 514, 173204.
Karhunen, K. 1946 ‘Zur Spektraltheorie Stochasticher. Prozessa Ann. Acad. Sci. Fennicae 37
Kibens, V. 1981 The limit of initial shear layer influence on jet development. AIAA Paper 81-1960.
Loéve, M. M. 1955Probability Theory. Van Nostrand.
Lumley, J. 1967 The structure of inhomogeneous turbulent flows. In Proc. Intl Colloq. on Fine Scale Structure of the Atmosphere and its Influence on Radio Waves (ed. Yaglam, A. M. & Tatarsky, V. I.), pp. 166178. Doklady Akademii Nauk SSSR, Moscow, Nauka.
Lumley, J. 1970 Stochastic Tools in Turbulence. Academic.
Monkewitz, P. A. 1988 Subharmonic resonance, pairing and shredding in the mixing layer. J. Fluid Mech. 188, 223252.
Tam, C. K. W. 1986 Excitation of instability waves by sound - A physical interpretation. J. Sound Vib. 105, 169172.
Taylor, J. A., Ukeiley, L. S. & Glauser, M. N. 2001 A low-dimensional description of the compressible axisymmetric shear layer. AIAA Paper 2001-0292.
Thomas, F. O. 1991 Structure of mixing layers and jets. Appl. Mech. Rev. 44 (3), 119153.
Tinney, C. E., Glauser, M. N. & Ukeiley, L. S. 2005 The evolution of the most energetic modes in a high subsonic Mach number turbulent jet. AIAA Paper 2005-0417.
Ukeiley, L. S., Cordier, L., Manceau, R., Delville, J., Glauser, M. N. & Bonnet, J. P. 2001 Examination of large-scale structures in a turbulent plane mixing layer. Part 2. Dynamical systems model. J. Fluid Mech., 441, 67108.
Ukeiley, L. S. & Glauser, M. N. 1995 Dynamics of large-scale structures in a plane turbulent mixing layer. Rep. MAE-311. Department of Aerospace and Mechanical Engineering, Clarkson University.
Ukeiley, L. S. & Seiner, J. M. 1998 Examination of large scale structures in transonic jet mixing layer. Proc. ASME FEDSM98-5234.
Ukeiley, L. S., Seiner, J. M. & Ponton, M. K. 1999 Azimuthal structure of an axisymmetric jet mixing layer. Proc. ASME FEDSM99-7252.
Walker, S. H. & Thomas, F. O. 1997 Experiments characterizing nonlinear shear layer dynamics in a supersonic rectangular jet undergoing screech. Phys. Fluids 9, 25622579.
Wänström, M., George, W. K. & Meyer, K.-E. 2005 POD applied to stereo PIV data of the far turbulent axisymmetric jet. Bulletin of the 58th APS DFD meeting., Chicago, IL.
Wygnanski, I. & Fiedler, H. 1969 Some measurements in the self-preserving jet. J. Fluid Mech. 38, 577612.
Zaman, K. B. M. Q. & Hussain, A. K. M. F. 1980 Vortex pairing in circular jet under controlled excitation. Part 1. General jet response. J. Fluid Mech. 101, 449492.
Zaman, K. B. M. Q. & Hussain, A. K. M. F. 1981 Turbulence supression in free shear flows by controlled excitation. J. Fluid Mech. 103, 133159.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Coherent structure in a turbulent jet via a vector implementation of the proper orthogonal decomposition

  • M. O. IQBAL (a1) and F. O. THOMAS (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed