Skip to main content Accessibility help

Characterization of superhydrophobic surfaces for drag reduction in turbulent flow

  • James W. Gose (a1), Kevin Golovin (a2), Mathew Boban (a3), Joseph M. Mabry (a4), Anish Tuteja (a2) (a3), Marc Perlin (a1) and Steven L. Ceccio (a1)...


A significant amount of the fuel consumed by marine vehicles is expended to overcome skin-friction drag resulting from turbulent boundary layer flows. Hence, a substantial reduction in this frictional drag would notably reduce cost and environmental impact. Superhydrophobic surfaces (SHSs), which entrap a layer of air underwater, have shown promise in reducing drag in small-scale applications and/or in laminar flow conditions. Recently, the efficacy of these surfaces in reducing drag resulting from turbulent flows has been shown. In this work we examine four different, mechanically durable, large-scale SHSs. When evaluated in fully developed turbulent flow, in the height-based Reynolds number range of 10 000 to 30 000, significant drag reduction was observed on some of the surfaces, dependent on their exact morphology. We then discuss how neither the roughness of the SHSs, nor the conventional contact angle goniometry method of evaluating the non-wettability of SHSs at ambient pressure, can predict their drag reduction under turbulent flow conditions. Instead, we propose a new characterization parameter, based on the contact angle hysteresis at higher pressure, which aids in the rational design of randomly rough, friction-reducing SHSs. Overall, we find that both the contact angle hysteresis at higher pressure, and the non-dimensionalized surface roughness, must be minimized to achieve meaningful turbulent drag reduction. Further, we show that even SHSs that are considered hydrodynamically smooth can cause significant drag increase if these two parameters are not sufficiently minimized.


Corresponding author

Email address for correspondence:


Hide All
Aljallis, E., Sikka, V. K., Jones, A. K., Sarshar, M. A., Datla, Raju & Choi, C. H. 2013 Experimental study of skin friction drag reduction on superhydrophobic flat plates in high Reynolds number boundary layer flow. Phys. Fluids 25 (2), 025103.
Bhushan, B. & Jung, Y. C. 2011 Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Prog. Mater. Sci. 56 (1), 1108.
Bidkar, R. A., Leblanc, L., Kulkarni, A. J., Bahadur, V., Ceccio, S. L. & Perlin, M. 2014 Skin-friction drag reduction in the turbulent regime using random-textured hydrophobic surfaces. Phys. Fluids 26 (8), 085108.
Bixler, G. D. & Bhushan, B. 2013a Bioinspired micro/nanostructured surfaces for oil drag reduction in closed channel flow. Soft Matt. 9 (5), 16201635.
Bixler, G. D. & Bhushan, B. 2013b Fluid drag reduction with shark-skin riblet inspired microstructured surfaces. Adv. Funct. Mater. 23 (36), 45074528.
Bixler, G. D. & Bhushan, B. 2013c Shark skin inspired low-drag microstructured surfaces in closed channel flow. J. Colloid Interface Sci. 393 (1), 384396.
Bushnell, D. M. & Moore, K. J. 1991 Drag reduction in nature. Annu. Rev. Fluid Mech. 23 (1), 6579.
Busse, A., Sandham, N. D., Mchale, G. & Newton, M. I. 2013 Change in drag, apparent slip and optimum air layer thickness for laminar flow over an idealised superhydrophobic surface. J. Fluid Mech. 727, 488508.
Campos, R., Guenthner, A. J., Haddad, T. S. & Mabry, J. M. 2011 Fluoroalkyl-functionalized silica particles: synthesis, characterization, and wetting characteristics. Langmuir 27 (16), 1020610215.
Cassie, A. B. D. & Baxter, S. 1944 Wettability of porous surfaces. Trans. Faraday Soc. 40, 546551.
Ceccio, S. L. 2010 Friction drag reduction of external flows with bubble and gas injection. Annu. Rev. Fluid Mech. 42 (1), 183203.
Daniello, R. J., Waterhouse, N. E. & Rothstein, J. P. 2009 Drag reduction in turbulent flows over superhydrophobic surfaces. Phys. Fluids 21 (8), 085103.
García-Mayoral, R. & Jiménez, J. 2011 Drag reduction by riblets. Phil. Trans. R. Soc. Lond. A 369 (1940), 14121427.
Gogte, S., Vorobieff, P., Truesdell, R., Mammoli, A., van Swol, F., Shah, P. & Brinker, C. J. 2005 Effective slip on textured superhydrophobic surfaces. Phys. Fluids 17 (5), 051701.
Golovin, K., Boban, M., Mabry, J. M. & Tuteja, A. 2017 Designing self-healing superhydrophobic surfaces with exceptional mechanical durability. ACS Appl. Mater. Interfaces 9 (12), 1121211223.
Golovin, K., Lee, D. H., Mabry, J. M. & Tuteja, A. 2013 Transparent, flexible, superomniphobic surfaces with ultra-low contact angle hysteresis. Angew. Chem. Intl Ed. Engl. 52 (49), 1300713011.
Golovin, K. B., Gose, J. W., Perlin, M., Ceccio, S. L. & Tuteja, A. 2016 Bioinspired surfaces for turbulent drag reduction. Phil. Trans. R. Soc. Lond. A 374 (2073), 20160189.
Gruncell, B. R. K., Sandham, N. D. & McHale, G. 2013 Simulations of laminar flow past a superhydrophobic sphere with drag reduction and separation delay. Phys. Fluids 25 (4), 043601.
Henoch, C., Krupenkin, T. N., Kolodner, P., Taylor, J. A., Hodes, M. S., Lyons, A. M., Peguero, C. & Breuer, K. 2006 Turbulent drag reduction using superhydrophobic surfaces. In Proceedings of the 3rd AIAA Flow Control Conference, vol. 2, pp. 840844. AIAA.
Hokmabad, B. V. & Ghaemi, S. 2016 Turbulent flow over wetted and non-wetted superhydrophobic counterparts with random structure. Phys. Fluids 28 (1), 015112.
Jelly, T. O., Jung, S. Y. & Zaki, T. A. 2014 Turbulence and skin friction modification in channel flow with streamwise-aligned superhydrophobic surface texture. Phys. Fluids 26 (9), 095102.
Jing, D. & Bhushan, B. 2013 Boundary slip of superoleophilic, oleophobic, and superoleophobic surfaces immersed in deionized water, hexadecane, and ethylene glycol. Langmuir 29 (47), 1469114700.
Joseph, P. & Tabeling, P. 2005 Direct measurement of the apparent slip length. Phys. Rev. E 71 (3), 035303.
Jung, Y. C. & Bhushan, B. 2010 Biomimetic structures for fluid drag reduction in laminar and turbulent flows. J. Phys.: Condens. Matter 22 (3), 035104.
Kanda, M., Moriwaki, R. & Kasamatsu, F. 2004 Large-eddy simulation of turbulent organized structures within and above explicitly resolved cube arrays. Boundary-Layer Meteorol. 112 (2), 343368.
Kim, J. & Kim, C. J. 2002 Nanostructured surfaces for dramatic reduction of flow resistance in droplet-based microfluidics. In Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), pp. 479482. IEEE.
Kim, J., Moin, P. & Moser, R. 1987 Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133166.
Lauga, Eric & Stone, H A 2003 Effective slip in pressure-driven Stokes flow. J. Fluid Mech. 489, 5577.
Lee, C., Choi, C. H. & Kim, C. J. 2008 Structured surfaces for a giant liquid slip. Phys. Rev. Lett. 101 (6), 064501.
Leonardi, S. & Castro, I. P. 2010 Channel flow over large cube roughness: a direct numerical simulation study. J. Fluid Mech. 651, 519539.
Leonardi, S., Orlandi, P. & Antonia, R. A. 2007 Properties of d- and k-type roughness in a turbulent channel flow. Phys. Fluids 19 (12), 125101.
Ling, H., Srinivasan, S., Golovin, K., McKinley, G. H., Tuteja, A. & Katz, J. 2016 High-resolution velocity measurement in the inner part of turbulent boundary layers over super-hydrophobic surfaces. J. Fluid Mech. 801, 670703.
Mabry, J. M., Vij, A., Iacono, S. T. & Viers, B. D. 2008 Fluorinated polyhedral oligomeric silsesquioxanes (F-POSS). Angew. Chem. Intl Ed. Engl. 47 (22), 41374140.
Mäkiharju, S. A., Perlin, M. & Ceccio, S. L. 2012 On the energy economics of air lubrication drag reduction. Intl J. Naval Arch. Ocean Engng 4 (4), 412422.
Min, T. G. & Kim, J. 2004 Effects of hydrophobic surface on skin-friction drag. Phys. Fluids 16 (7), L55L58.
Navier, C. L. M. H. 1823 Mémoire sur les lois du mouvement des fluides. Mém. Acad. R. Sci. Inst. Fr. 6, 389440.
Ou, Jia & Rothstein, J. P. 2005 Direct velocity measurements of the flow past drag-reducing ultrahydrophobic surfaces. Phys. Fluids 17 (10), 103606.
Park, H., Sun, G. & Kim, C.-J. C. J. 2014 Superhydrophobic turbulent drag reduction as a function of surface grating parameters. J. Fluid Mech. 747, 722734.
Perlin, M., Dowling, D. R. & Ceccio, S. L. 2016 Freeman scholar review: passive and active skin-friction drag reduction in turbulent boundary layers. Trans. ASME J. Fluids Engng 138 (9), 091104.
Rothstein, J. P. 2010 Slip on superhydrophobic surfaces. Annu. Rev. Fluid Mech. 42 (1), 89109.
Schlichting, H. & Gersten, K. 2000 Boundary-Layer Theory. Springer.
Schultz, M. P. & Flack, K. A. 2007 The rough-wall turbulent boundary layer from the hydraulically smooth to the fully rough regime. J. Fluid Mech. 580, 381405.
Schultz, M. P. & Flack, K. A. 2013 Reynolds-number scaling of turbulent channel flow. Phys. Fluids 25 (2), 025104.
Song, D., Daniello, R. J. & Rothstein, J. P. 2014 Drag reduction using superhydrophobic sanded Teflon surfaces. Exp. Fluids 55 (8), 1783.
Srinivasan, S., Choi, W., Park, K. C., Chhatre, S. S., Cohen, R. E. & McKinley, G. H. 2013 Drag reduction for viscous laminar flow on spray-coated non-wetting surfaces. Soft Matt. 9 (24), 56915702.
Srinivasan, S., Kleingartner, J. A., Gilbert, J. B., Cohen, R. E., Milne, A. J. B. & McKinley, G. H. 2015 Sustainable drag reduction in turbulent Taylor–Couette flows by depositing sprayable superhydrophobic surfaces. Phys. Rev. Lett. 114 (1), 014501.
Streeter, B.2014 In Global Marine Fuel Trends 2030.
Ünal, U. O., Ünal, B. & Atlar, M. 2012 Turbulent boundary layer measurements over flat surfaces coated by nanostructured marine antifoulings. Exp. Fluids 52 (6), 14311448.
US Department of Transportation2012 Table 4-5: Fuel consumption by mode of transportation in physical units. Tech. Rep.
Watanabe, K. & Udagawa, H. 2001 Drag reduction of non-Newtonian fluids in a circular pipe with a highly water-repellent wall. AIChE J. 47 (2), 256262.
White, F. M. 2006 Viscous Fluid Flow, 3rd edn. McGraw-Hill Higher Education.
Woolford, B., Prince, J., Maynes, D. & Webb, B. W. 2009 Particle image velocimetry characterization of turbulent channel flow with rib patterned superhydrophobic walls. Phys. Fluids 21 (8), 5106.
Xie, Z. & Castro, I. P. 2006 LES and RANS for turbulent flow over arrays of wall-mounted obstacles. Flow Turbul. Combust. 76 (3), 291312.
Xie, Z. T., Coceal, O. & Castro, I. P. 2008 Large-eddy simulation of flows over random urban-like obstacles. Boundary-Layer Meteorol. 129 (1), 123.
Yang, J., Zhang, Z., Xu, X., Men, X., Zhu, X. & Zhou, X. 2011 Superoleophobic textured aluminum surfaces. New J. Chem. 35 (11), 24222426.
Young, T. 1805 An essay on the cohesion of fluids. Phil. Trans. R. Soc. Lond. 95, 6587.
Zanoun, E., Nagib, H. & Durst, F. 2009 Refined c f relation for turbulent channels and consequences for high-Re experiments. Fluid Dyn. Res. 41 (2), 021405.
Zhao, J. P., Du, X. D. & Shi, X. H. 2007 Experimental research on friction-reduction with super-hydrophobic surfaces. J. Mar. Sci. Appl. 6 (3), 5861.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Characterization of superhydrophobic surfaces for drag reduction in turbulent flow

  • James W. Gose (a1), Kevin Golovin (a2), Mathew Boban (a3), Joseph M. Mabry (a4), Anish Tuteja (a2) (a3), Marc Perlin (a1) and Steven L. Ceccio (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed