Skip to main content Accessibility help
×
Home

Centrifugal effects in rotating convection: nonlinear dynamics

  • J. M. LOPEZ (a1) and F. MARQUES (a2)

Abstract

Rotating convection in cylindrical containers is a canonical problem in fluid dynamics, in which a variety of simplifying assumptions have been used in order to allow for low-dimensional models or linear stability analysis from trivial basic states. An aspect of the problem that has received only limited attention is the influence of the centrifugal force, because it makes it difficult or even impossible to implement the aforementioned approaches. In this study, the mutual interplay between the three forces of the problem, Coriolis, gravitational and centrifugal buoyancy, is examined via direct numerical simulation of the Navier–Stokes equations in a parameter regime where the three forces are of comparable strengths in a cylindrical container with the radius equal to the depth so that wall effects are also of order one. Two steady axisymmetric basic states exist in this regime, and the nonlinear dynamics of the solutions bifurcating from them is explored in detail. A variety of bifurcated solutions and several codimension-two bifurcation points acting as organizing centres for the dynamics have been found. A main result is that the flow has simple dynamics for either weak heating or large centrifugal buoyancy. Reducing the strength of centrifugal buoyancy leads to subcritical bifurcations, and as a result linear stability is of limited utility, and direct numerical simulations or laboratory experiments are the only way to establish the connections between the different solutions and their organizing centres, which result from the competition between the three forces. Centrifugal effects primarily lead to the axisymmetrization of the flow and a reduction in the heat flux.

Copyright

Corresponding author

Email address for correspondence: lopez@math.asu.edu

References

Hide All
Abshagen, J., Lopez, J. M., Marques, F. & Pfister, G. 2005 a Mode competition of rotating waves in reflection-symmetric Taylor–Couette flow. J. Fluid Mech. 540, 269299.
Abshagen, J., Lopez, J. M., Marques, F. & Pfister, G. 2005 b Symmetry breaking via global bifurcations of modulated rotating waves in hydrodynamics. Phys. Rev. Lett. 94, 074101.
Abshagen, J., Lopez, J. M., Marques, F. & Pfister, G. 2008 Bursting dynamics due to a homoclinic cascade in Taylor–Couette flow. J. Fluid Mech. 613, 357384.
Barcilon, V. & Pedlosky, J. 1967 On the steady motions produced by a stable stratification in a rapidly rotating fluid. J. Fluid Mech. 29, 673690.
Barkley, D., Gomes, M. G. & Henderson, R. D. 2002 Three-dimensional instability in flow over a backward-facing step. J. Fluid Mech. 473, 167190.
Becker, N., Scheel, J. D., Cross, M. C. & Ahlers, G. 2006 Effect of the centrifugal force on domain chaos in Rayleigh–Bénard convection. Phys. Rev. E 73, 066309.
Bodenschatz, E., Pesch, W. & Ahlers, G. 2000 Recent developments in Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. 32, 709778.
Boronska, K. & Tuckerman, L. S. 2006 Standing and travelling waves in cylindrical Rayleigh–Bénard convection. J. Fluid Mech. 559, 279298.
Brummell, N., Hart, J. E. & Lopez, J. M. 2000 On the flow induced by centrifugal buoyancy in a differentially-heated rotating cylinder. Theor. Comput. Fluid Dyn. 14, 3954.
Busse, F. H. 1970 Thermal instabilities in rapidly rotating systems. J. Fluid Mech. 44, 441460.
Busse, F. H. 1994 Convection driven zonal flows and vortices in the major planets. Chaos 4, 123134.
Busse, F. H. & Carrigan, C. R. 1974 Convection induced by centrifugal buoyancy. J. Fluid Mech. 62, 579592.
Busse, F. H., Hartung, G., Jaletzky, M. & Sommerman, G. 1998 Experiments on thermal convection in rotating systems motivated by planetary problems. Dyn. Atmos. Oceans 27, 161174.
Busse, F. H. & Heikes, K. E. 1980 Convection in a rotating layer: a simple case of turbulence. Science 208, 173175.
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Oxford University Press.
Clever, R. M. & Busse, F. H. 1979 Nonlinear properties of convection rolls in a horizontal layer rotating about a vertical axis. J. Fluid Mech. 94, 609627.
Fornberg, B. 1998 A Practical Guide to Pseudospectral Methods. Cambridge University Press.
Gelfgat, A. Y. & Bar-Yoseph, P. Z. 2004 Multiple solutions and stability of confined convective and swirling flows – a continuing challenge. Intl J. Numer. Methods Heat Fluid Flow 14, 213241.
Goldstein, H. F., Knobloch, E., Mercader, I. & Net, M. 1993 Convection in a rotating cylinder. Part 1. Linear theory for moderate Prandtl numbers. J. Fluid Mech. 248, 583604.
Goldstein, H. F., Knobloch, E., Mercader, I. & Net, M. 1994 Convection in a rotating cylinder. Part 2. Linear theory for low Prandtl numbers. J. Fluid Mech. 262, 293324.
Guckenheimer, J. & Holmes, P. 1997 Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer.
Hart, J. E. 2000 On the influence of centrifugal buoyancy on rotating convection. J. Fluid Mech. 403, 133151.
Hof, B., Lucas, P. G. & Mullin, T. 1999 Flow state multiplicity in convection. Phys. Fluids 11, 28152817.
Homsy, G. M. & Hudson, J. L. 1969 Centrifugally driven thermal convection in a rotating cylinder. J. Fluid Mech. 35, 3352.
Homsy, G. M. & Hudson, J. L. 1971 Centrifugal convection and its effect on the asymptotic stability of a bounded rotating fluid heated from below. J. Fluid Mech. 48, 605624.
Hu, Y., Ecke, R. E. & Ahlers, G. 1997 Convection under rotation for Prandtl numbers near 1: linear stability, wave-number selection, and pattern dynamics. Phys. Rev. E 55, 69286949.
Hu, Y., Pesch, W., Ahlers, G. & Ecke, R. E. 1998 Convection under rotation for Prandtl numbers near 1: Küppers–Lortz instability. Phys. Rev. E 58, 58215833.
Hughes, S. & Randriamampianina, A. 1998 An improved projection scheme applied to pseudospectral methods for the incompressible Navier–Stokes equations. Intl J. Numer. Methods Fluids 28, 501521.
Julien, K., Legg, S., McWilliams, J. & Werne, J. 1996 Rapidly rotating turbulent Rayleigh–Bénard convection. J. Fluid Mech. 322, 243273.
Koschmieder, E. L. 1993 Bénard Cells and Taylor Vortices. Cambridge University Press.
Krishnamurti, R. 1971 On the transition to turbulent convection. In Eighth Symposium on Naval Hydrodynamics, vol. ARC-179, pp. 289–310. Office of Naval Research.
Krupa, M. 1990 Bifurcations of relative equilibria. SIAM J. Math. Anal. 21, 14531486.
Küppers, G. 1970 The stability of steady finite amplitude convection in a rotating fluid layer. Phys. Lett. A 32, 78.
Küppers, G. & Lortz, D. 1969 Transition from laminar convection to thermal turbulence in a rotating fluid layer. J. Fluid Mech. 35, 609620.
Kuznetsov, Y. A. 2004 Elements of Applied Bifurcation Theory, 3rd ed. Springer.
Lopez, J. M. & Marques, F. 2003 Small aspect ratio Taylor–Couette flow: onset of a very-low-frequency three-torus state. Phys. Rev. E 68, 036302.
Lopez, J. M., Marques, F., Mercader, I. & Batiste, O. 2007 Onset of convection in a moderate aspect-ratio rotating cylinder: Eckhaus–Benjamin–Feir instability. J. Fluid Mech. 590, 187208.
Lopez, J. M., Marques, F. & Sanchez, J. 2001 Oscillatory modes in an enclosed swirling flow. J. Fluid Mech. 439, 109129.
Lopez, J. M., Marques, F. & Shen, J. 2004 Complex dynamics in a short annular container with rotating bottom and inner cylinder. J. Fluid Mech. 51, 327354.
Lopez, J. M., Rubio, A. & Marques, F. 2006 Traveling circular waves in axisymmetric rotating convection. J. Fluid Mech. 569, 331348.
Marques, F. & Lopez, J. M. 2008 Influence of wall modes on the onset of bulk convection in a rotating cylinder. Phys. Fluids 20, 024109.
Marques, F., Mercader, I., Batiste, O. & Lopez, J. M. 2007 Centrifugal effects in rotating convection: axisymmetric states and three-dimensional instabilities. J. Fluid Mech. 580, 303318.
Mercader, I., Net, M. & Falqués, A. 1991 Spectral methods for high order equations. Comput. Methods Appl. Mech. Engng 91, 12451251.
Niemela, J. J. & Donnelly, R. J. 1986 Direct transition to turbulence in rotating Bénard convection. Phys. Rev. Lett. 57, 25242527.
Ning, L. & Ecke, R. E. 1993 Rotating Rayleigh–Bénard convection: aspect-ratio dependence of the initial bifurcations. Phys. Rev. E 47, 33263333.
Nore, C., Tuckerman, L. S., Daube, O. & Xin, S. 2003 The 1:2 mode interaction in exactly counter-rotating von Kármán swirling flow. J. Fluid Mech. 477, 5188.
Orszag, S. A. & Patera, A. T. 1983 Secondary instability of wall-bounded shear flows. J. Fluid Mech. 128, 347385.
Ponty, Y., Passot, T. & Sulem, P. L. 1997 Pattern dynamics in rotating convection at finite Prandtl number. Phys. Rev. E 56, 41624178.
Portegies, J. W., Kunnen, R. P. J., van Heijst, G. J. F. & Molenaar, J. 2008 A model for vortical plumes in rotating convection. Phys. Fluids 20, 066602.
Rand, D. 1982 Dynamics and symmetry. Predictions for modulated waves in rotating fluids. Arch. Ratio. Mech. Anal. 79, 138.
Rossby, H. T. 1967 A study of Bénard convection with and without rotation. J. Fluid Mech. 29, 673690.
Rubio, A., Lopez, J. M. & Marques, F. 2008 Modulated rotating convection: radially traveling concentric rolls. J. Fluid Mech. 608, 357378.
Sanchez, J., Marques, F. & Lopez, J. M. 2002 A continuation and bifurcation technique for navier-stokes flows. J. Comput. Phys. 180, 7898.
Scheel, J. D. 2007 The amplitude equation for rotating Rayleigh–Bénard convection. Phys. Fluids 19, 104105.
Tu, Y. & Cross, M. C. 1992 Chaotic domain structure in rotating convection. Phys. Rev. Lett. 69, 25152518.
Tuckerman, L. S. & Barkley, D. 1988 Global bifurcation to traveling waves in axisymmetric convection. Phys. Rev. Lett. 61, 408411.
Wittenberg, R. W. & Holmes, P. 1997 The limited effectiveness of normal forms: a critical review and extension of local bifurcation studies of the Brusselator PDE. Physica D 100, 140.
Zhong, F., Ecke, R. & Steinberg, V. 1993 Rotating Rayleigh–Bénard convection: asymmetric modes and vortex states. J. Fluid Mech. 249, 135159.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Related content

Powered by UNSILO
Type Description Title
VIDEO
Movies

Lopez and Marques supplementary movie
Movie 1. Isotherms at mid-height of QP at Ra=15,500 and Fr=0.30.

 Video (11.3 MB)
11.3 MB
VIDEO
Movies

Lopez and Marques supplementary movie
Movie 2. Isotherms at mid-height of QP (locked) at Ra=17,000 and Fr=0.30.

 Video (11.3 MB)
11.3 MB
VIDEO
Movies

Lopez and Marques supplementary movie
Movie 3. Isotherms at mid-height of QP at Ra=18,500 and Fr=0.30.

 Video (15.1 MB)
15.1 MB
VIDEO
Movies

Lopez and Marques supplementary movie
Movie 4. Isotherms at mid-height of QP at Ra=20,000 and Fr=0.30.

 Video (7.6 MB)
7.6 MB
VIDEO
Movies

Lopez and Marques supplementary movie
Movie 5. Isotherms at mid-height of T3 at Ra=20,000 and F=0 (frame rate is half that of movies 1 to 4).

 Video (30.1 MB)
30.1 MB

Centrifugal effects in rotating convection: nonlinear dynamics

  • J. M. LOPEZ (a1) and F. MARQUES (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.