Skip to main content Accessibility help
×
Home

Buoyancy-driven plumes in a layered porous medium

  • Duncan R. Hewitt (a1), Gunnar G. Peng (a2) and John R. Lister (a2)

Abstract

Thin, roughly horizontal low-permeability layers are a common form of large-scale heterogeneity in geological porous formations. In this paper, the dynamics of a buoyancy-driven plume in a two-dimensional layered porous medium is studied theoretically, with the aid of high-resolution numerical simulations. The medium is uniform apart from a thin, horizontal layer of a much lower permeability, located a dimensionless distance $L\gg 1$ below the dense plume source. If the dimensionless thickness $2\unicode[STIX]{x1D700}L$ and permeability $\unicode[STIX]{x1D6F1}$ of the low-permeability layer are small, the effect of the layer is found to be well parameterized by its impedance $\unicode[STIX]{x1D6FA}=2\unicode[STIX]{x1D700}L/\unicode[STIX]{x1D6F1}$ . Five different regimes of flow are identified and characterized. For $\unicode[STIX]{x1D6FA}\ll L^{1/3}$ , the layer has no effect on the plume, but as $\unicode[STIX]{x1D6FA}$ is increased the plume widens and spreads over the layer as a gravity current. For still larger $\unicode[STIX]{x1D6FA}$ , the flow becomes destabilized by convective instabilities both below and above the layer, until, for $\unicode[STIX]{x1D6FA}\gg L$ , the spread of the plume is dominated by convective mixing and buoyancy is transported across the layer by diffusion alone. Analytical models for the spread of the plume over the layer in the various different regimes are presented.

Copyright

Corresponding author

Email address for correspondence: d.hewitt@ucl.ac.uk

References

Hide All
Bauer-Gottwein, P., Langer, T., Prommer, H., Wolski, P. & Kinzelbach, W. 2007 Okavango delta islands: interaction between density-driven flow and geochemical reactions under evapo-concentration. J. Hydrol. 335, 389405.
Farcas, A. & Woods, A. W. 2013 Three-dimensional buoyancy-driven flow along a fractured boundary. J. Fluid Mech. 728, 279305.
Hesse, M. A. & Woods, A. W. 2010 Buoyant dispersal of CO2 during geological storage. Geophys. Res. Lett. 37, 01403.
Hewitt, D. R., Neufeld, J. A. & Lister, J. R. 2012 Ultimate regime of high Rayleigh number convection in a porous medium. Phys. Rev. Lett. 108, 224503.
Hewitt, D. R., Neufeld, J. A. & Lister, J. R. 2013 Convective shutdown in a porous medium at high Rayleigh number. J. Fluid Mech. 719, 551586.
Hewitt, D. R., Neufeld, J. A. & Lister, J. R. 2014 High Rayleigh number convection in a porous medium containing a thin low-permeability layer. J. Fluid Mech. 756, 844869.
Howard, L. N. 1964 Convection at high Rayleigh number. In Applied Mechanics, Proceedings of the 11th International Congress of Applied Mathematics (ed. Görtler, H.), pp. 11091115.
Huppert, H. E. & Neufeld, J. A. 2014 The fluid mechanics of carbon dioxide sequestration. Annu. Rev. Fluid Mech. 46, 255272.
Kissling, W. M. & Weir, G. J. 2005 The spatial distribution of the geothermal fields in the Taupo Volcanic Zone, New Zealand. J. Volcanol. Geotherm. Res. 125, 136150.
MacFarlane, D. S., Cherry, J. A., Gillham, R. W. & Sudicky, E. A. 1983 Migration of contaminants in groundwater at a landfill: a case study. J. Hydrol. 63, 129.
Neufeld, J. A., Vella, D., Huppert, H. E. & Lister, J. R. 2011 Leakage from gravity currents in a porous medium. Part 1. A localized sink. J. Fluid Mech. 666, 391413.
Neufeld, J. A. & Huppert, H. E. 2009 Modelling carbon dioxide sequestration in layered strata. J. Fluid Mech. 625, 353370.
Pegler, S. S., Huppert, H. E. & Neufeld, J. A. 2014 Fluid migration between confined aquifers. J. Fluid Mech. 757, 330353.
Phillips, O. M. 2009 Geological Fluid Dynamics: Sub-surface Flow and Reactions. CUP.
Pritchard, D. 2007 Gravity currents over fractured substrates in a porous medium. J. Fluid Mech. 584, 415431.
Pritchard, D. & Hogg, A. J. 2002 Draining viscous gravity currents in a vertical fracture. J. Fluid Mech. 459, 207216.
Pritchard, D., Woods, A. W. & Hogg, A. J. 2001 On the slow draining of a gravity current moving through a layered permeable medium. J. Fluid Mech. 444, 2347.
Rayward-Smith, W. J. & Woods, A. W. 2011 Dispersal of buoyancy-driven flow in porous media with inclinded baffles. J. Fluid Mech. 689, 517528.
Roes, M. A., Bolster, D. T. & Flynn, M. R. 2014 Buoyant convection from a discrete source in a leaky porous medium. J. Fluid Mech. 755, 204229.
Sahu, C. K. & Flynn, M. R. 2015 Filling box flows in porous media. J. Fluid Mech. 782, 455478.
Sahu, C. K. & Flynn, M. R. 2016 Filling box flows in an axisymmetric porous medium. Trans. Porous Med. 112, 619635.
Sahu, C. K. & Flynn, M. R. 2017 The effect of sudden permeability changes in porous media filling box flows. Trans. Porous Med. 119, 95118.
Slim, A. C. 2014 Solutal-convection regimes in a two-dimensional porous medium. J. Fluid Mech. 741, 461491.
Slim, A. C., Bandi, M. M., Miller, J. C. & Mahadevan, L. 2013 Dissolution-driven convection in a Hele–Shaw cell. Phys. Fluids 25, 024101.
Turner, J. S. 1973 Buoyancy Effects in Fluids. CUP.
Wooding, R. A. 1963 Convection in a saturated porous medium at large Rayleigh number or Peclét number. J. Fluid Mech. 15, 527544.
Wooding, R. A., Tyler, S. W., White, I. & Anderson, P. A. 1997 Convection in groundwater below an evaporating salt lake: 2. Evolution of fingers or plumes. Water Resour. Res. 33, 12191228.
Zheng, Z., Soh, B., Huppert, H. E. & Stone, H. A. 2013 Fluid drainage from the edge of a porous reservoir. J. Fluid Mech. 718, 558568.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Buoyancy-driven plumes in a layered porous medium

  • Duncan R. Hewitt (a1), Gunnar G. Peng (a2) and John R. Lister (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed