Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-17T21:27:41.187Z Has data issue: false hasContentIssue false

The axisymmetric rise of a spherical bubble at the exit of an orifice in the presence of a stagnant cap of insoluble surfactants

Published online by Cambridge University Press:  21 April 2006

Zeev Dagan
Affiliation:
Department of Mechanical Engineering, The City College of the City University of New York, New York, NY 10031, USA
Zong-Yi Yan
Affiliation:
Department of Mechanics, Peking University, Beijing, China
Huixian Shen
Affiliation:
Department of Mathematics, The Affiliated College of Peking University, Beijing, China

Abstract

The motion of a spherical droplet in unbounded exterior phase in the presence of a stagnant cap of adsorbed insoluble surfactants has been recently presented by Sadhal & Johnson (1983). The present study considers the axisymmetric motion of a gas bubble at the exit of a circular orifice in the presence of a similar stagnant cap.

The solution procedure utilizes the boundary integral representation in order to obtain the drag correction factor for a bubble translating away from the orifice in otherwise quiescent fluid, and for a fixed bubble exposed to Sampson's flow towards the orifice. It is demonstrated that the presence of the confining orifice boundaries substantially increases the drag acting on the bubble, and the solution approaches the exact result of Sadhal and Johnson as the distance between the bubble and the orifice is increased. Furthermore, it is shown that for a fixed amount of surfactants on the bubble surface the cap angle increases with distance from the orifice due to the diminishing hydrodynamic interaction. Hence, the quasi-steady terminal velocity of a bubble rising from an orifice is reduced by the viscous boundary interaction, and by the growing immobile cap size.

Type
Research Article
Copyright
© 1988 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Argawal, S. K. & Wasan, D. T. 1979 Chem. Engng Sci. 18, 215.
Beitel, A. & Heideger, W. J. 1971 Chem. Engng Sci. 26, 711.
Collins, W. D. 1961 Proc. Camb. Phil. Soc. 57, 367.
Collins, W. D. 1963 Mathematika 10, 72.
Dagan, Z., Weinbaum, S. & Pfeffer, R. 1982 J. Fluid. Mech. 115, 505.
Davis, A. M. J. 1983 Intl J. Multiphase Flow 9, 575.
Davis, R. & Acrivos, A. 1966 Chem. Engng Sci. 21, 681.
Dorrepaal, J. M., O'Neill, M. E. & Ranger, K. B. 1976 J. Fluid Mech. 75, 273.
Garner, F. H. & Skelland, A. H. P. 1955 Chem. Engng Sci. 4, 149.
Griffith, R. M. 1962 Chem. Engng Sci. 17, 1057.
Happel, J. & Brenner, H. 1973 Low Reynolds Number Hydrodynamics. Noordhoff.
Harper, J. F. 1973 Adv. Appl. Mech. 12, 59.
Harper, J. F. 1974 Q. J. Mech. Appl. Maths 27, 87.
Harper, J. F. 1982 Appl. Sci. Res. 38, 343.
Hetsroni, G. 1982 Handbook of Multiphase Systems. McGraw-Hill.
Holbrook, J. A. & Levan, M. D. 1983a Chem. Engng Commun. 20, 191.
Holbrook, J. A. & Levan, M. D. 1983b Chem. Engng Commun. 20, 273.
Horton, T. J., Fritsch, T. R. & Kintner, R. C. 1965 Can. J. Chem. Engng 43, 143.
Huang, W. S. & Kintner, R. C. 1969 AIChE J. 15, 735.
Johns, L. E. & Beckman, R. B. 1966 AIChE J. 12, 10.
Ladyzhenskaya, O. A. 1963 The Mathematical Theory of Viscous Incompressible Flow, chap. 3. Gordon & Breach.
Levan, M. D. & Newman, J. 1976 AIChE J. 22, 695.
Levich, V. G. 1962 Physicochemical Hydrodynamics. Prentice-Hall.
Newman, J. 1967 Chem. Engng Sci. 22, 83.
Sadhal, S. S. & Johnson, R. E. 1983 J. Fluid Mech. 126, 237.
Sadhal, S. S. & Johnson, R. E. 1986 Chem. Engng Commun. 46, 97.
Savic, P. 1953 Nat. Res. Counc., Can., Div. Mech. Engng Rep. MT-22.
Saville, D. A. 1973 Chem. Engng J. 5, 251.
Schechter, R. S. & Farely, R. W. 1963 Can. J. Chem. Engng 41, 103.
Wasserman, M. L. & Slattery, J. C. 1969 AIChE J. 15, 533.
Yan, Z. 1985 Three-dimensional hydrodynamic and osmotic pore entrance phenomena. Ph.D. dissertation, The City University of New York.
Yan, Z., Weinbaum, S., Ganatos, P. & Pfeffer, R. 1986 J. Fluid Mech. 174, 39.