Skip to main content Accessibility help

The asymptotic downstream flow of plane turbulent wall jets without external stream

  • Klaus Gersten (a1)


The plane turbulent wall-jet flow without externally imposed stream is considered. It is assumed that the wall jet does not emerge from a second wall perpendicular to the velocity vector of the initial wall jet. The (kinematic) momentum flux $K(x)$ of the wall jet decreases downstream owing to the shear stress at the wall. This investigation is based on the hypothesis that the total friction force on the wall is smaller than the total inflow momentum flux. In other words, the turbulent wall jet tends to a turbulent ‘half-free jet’ with a non-zero momentum flux $K_{\infty }\;(\text{m}^{3}~\text{s}^{-2})$ far downstream. The fact that the turbulent half-free jet is the asymptotic form of a turbulent wall jet is the basis for a singular perturbation method by which the wall-jet flow is determined. It turns out that the ratio between the wall distance $y_{m}$ of the maximum velocity and the wall distance $y_{0.5}$ of half the maximum velocity decreases downstream to zero. Dimensional analysis leads immediately to a universal function of the dimensionless momentum flux $K(\mathit{Re}_{x})/K_{\infty }$ that depends asymptotically only on the local Reynolds number $\mathit{Re}_{x}=\sqrt{(x-x_{0})K_{\infty }}/{\it\nu}$ , where $x_{0}$ denotes the coordinate of the virtual origin. When the values $K$ and ${\it\nu}$ at the position $x-x_{0}$ are known, the asymptotic momentum flux $K_{\infty }$ can be determined. Experimental data on all turbulent plane wall jets (except those emerging from a second plane wall) collapse to a single universal curve. Comparisons between available experimental data and the analysis make the hypothesis $K_{\infty }\neq 0$ plausible. A convincing verification, however, will be possible in the future, preferably by direct numerical simulations.


Corresponding author

Email address for correspondence:


Hide All
Abrahamsson, H., Johansson, B. & Löfdahl, L. 1994 A turbulent plane two-dimensional wall jet in a quiescent surrounding. Eur. J. Mech. (B/Fluids) 13, 533556.
Barenblatt, G. I., Chorin, A. J. & Prostokishin, V. M. 2005 The turbulent wall jet: a triple-layered structure and incomplete similarity. Proc. Natl Acad. Sci. USA 102 (25), 88508853.
Bradshaw, P. & Gee, M. Y.1960 Turbulent wall jets with and without an external stream. Aero. Res. Counc. R&M 3252.
George, W. K., Abrahamsson, H., Eriksson, J., Karlsson, R. I., Löfdahl, L. & Wosnik, M. 2000 A similarity theory for the turbulent plane wall jet without external stream. J. Fluid Mech. 425, 367411.
Gersten, K. & Herwig, H. 1992 Strömungsmechanik. Grundlagen der Impuls-, Wärme- und Stoffübertragung aus asymptotischer Sicht. Vieweg.
Hammond, G. P. 1982 Complete velocity profile and ‘optimum’ skin friction formulas for the plane wall jet. Trans. ASME J. Fluids Engng 104, 5965.
Karlsson, R., Eriksson, J. & Persson, J. 1993 LDV measurements in a plane wall jet in a large enclosure. In Laser Techniques and Applications in Fluid Mechanics (ed. Adrian, R., Durâo, D., Durst, F., Heitor, M., Maeda, M. & Whitelaw, J.), pp. 311332. Springer.
Launder, B. E. & Rodi, W. 1981 The turbulent wall jet. Prog. Aerosp. Sci. 19, 81128.
Launder, B. E. & Rodi, W. 1983 The turbulent wall jet – measurements and modeling. Annu. Rev. Fluid Mech. 15, 429459.
Myers, G. E., Schauer, J. J. & Eustis, R. H. 1963 Plane turbulent wall jet flow development and friction factor. Trans. ASME J. Basic Engng 85, 4754.
Narasimha, R., Narayan, K. Y. & Parthasarathy, S. P. 1973 Parametric analysis of turbulent wall jets in still air. Aeronaut. J. 77, 355359.
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.
Saffman, P. G. 1970 A model for inhomogeneous turbulent flow. Proc. R. Soc. Lond. A 317, 417433.
Schlichting, H. & Gersten, K. 2003 Boundary-Layer Theory, 8th revised and enlarged edn. Springer.
Schneider, W. 1985 Decay of momentum flux in submerged jets. J. Fluid Mech. 154, 91110.
Schneider, W. 1991 Boundary-layer theory of free turbulent shear flows. Z. Flugwiss. Weltraumforsch. 15, 143158.
Schneider, M. E. & Goldstein, R. J. 1994 Laser Doppler measurement of turbulence parameters in a two-dimensional plane wall jet. Phys. Fluids 6, 31163129.
Schneider, W. & Mörwald, K. 1987 Asymptotic analysis of turbulent free shear layers. In Proc. Int. Conf. Fluid Mech., pp. 5055. Beijing University Press.
Tailland, A. & Mathieu, J. 1967 Jet pariétal. J. Méc. 6, 103130.
Tollmien, W. 1926 Berechnung turbulenter Ausbreitungsvorgänge. Z. Angew. Math. Mech. 6, 468478; NACA TM 1085 (1945).
Wygnanski, I., Katz, Y. & Horev, E. 1992 On the applicability of various scaling laws to the turbulent wall jet. J. Fluid Mech. 234, 669690.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed