Skip to main content Accessibility help
×
Home

Apparent yield stress in rigid fibre suspensions: the role of attractive colloidal interactions

  • S. Bounoua (a1), E. Lemaire (a1), J. Férec (a2), G. Ausias (a2), A. Zubarev (a3) and P. Kuzhir (a1)...

Abstract

This work is focused on the modelling of the shear and normal stresses in fibre suspensions that are subjected to a simple shear flow in the presence of short-range lubrication forces, van der Waals and electrostatic forces, as well as solid friction forces between fibres. All of these forces are weighed by the contact probability. The theory is developed for attractive fibres with van der Waals interaction dominating over electrostatic repulsion. The model predicts a simple Bingham law for both the shear stress and the first normal stress difference, with the apparent shear and normal yield stresses proportional to the second and the third power of the particle volume fraction respectively. The model is applied to the experimental data of Rakatekar et al. (Adv. Mater., vol. 21, 2009, pp. 874–878) and Natale et al. (AIChE J., vol. 60, 2014, pp. 1476–1487) on suspensions of carbon nanotubes dispersed in a Newtonian epoxy resin. It reproduces well the quadratic dependence of the apparent yield stress on the particle volume fraction $(\unicode[STIX]{x1D70E}_{Y}\propto \unicode[STIX]{x1D719}^{2})$ for average particle aspect ratios of $r=160$ and 1200, while it underpredicts the power-law exponent for $r=80$ (always predicting $\unicode[STIX]{x1D719}^{2}$ behaviour instead of $\unicode[STIX]{x1D719}^{3.2}$ ).

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Apparent yield stress in rigid fibre suspensions: the role of attractive colloidal interactions
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Apparent yield stress in rigid fibre suspensions: the role of attractive colloidal interactions
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Apparent yield stress in rigid fibre suspensions: the role of attractive colloidal interactions
      Available formats
      ×

Copyright

Corresponding author

Email address for correspondence: kuzhir@unice.fr

References

Hide All
Abisset-Chavanne, E., Chinesta, F., Ferec, J., Ausias, G. & Keunings, R. 2015 On the multiscale description of dilute suspensions of non-Brownian rigid clusters composed of rods. J. Non-Newtonian Fluid Mech. 222, 3444.
Abisset-Chavanne, E., Mezher, R., Le Corre, S., Ammar, A. & Chinesta, F. 2013 Kinetic theory microstructure modelling in concentrated suspensions. Entropy 15, 28052832.
Allaoui, A., Bai, S., Cheng, H. M. & Bai, J. B. 2002 Mechanical and electrical properties of a MWNT/epoxy composite. Compos. Sci. Technol. 62, 19931998.
Barnes, H. A. 1999 The yield stress – a review or ‘𝜋𝛼𝜈𝜏𝛼 𝜌𝜀𝜄’ – everything flows? J. Non-Newtonian Fluid Mech. 81, 133178.
Batchelor, G. K. 1970 Slender-body theory for particles of arbitrary cross-section in Stokes flow. J. Fluid Mech. 44, 419440.
Bennington, C. P. J., Kerekes, R. J. & Grace, J. R. 1990 The yield stress of fibre suspensions. Can. J. Chem. Engng 68, 748757.
Bergström, L. 1998 Shear thinning and shear thickening of concentrated ceramic suspensions. Colloids Surf. A 133, 151155.
Brenner, H. 1974 Rheology of a dilute suspension of axisymmetric Brownian particles. Intl J. Multiphase Flow 1, 195341.
Brenner, S. L. & Parsegian, V. A. 1974 A physical method for deriving the electrostatic interaction between rod-like polyions at all mutual angles. Biophys. J. 14, 327334.
Chaouche, M. & Koch, D. L. 2001 Rheology of non-Brownian rigid fibre suspensions with adhesive contacts. J. Rheol. 45, 369382.
Christensen, R. M. 1991 Mechanics of Composite Materials. Krieger Publishing Company.
Cui, H. & Grace, J. R. 2007 Flow of pulp fibre suspension and slurries: a review. Intl J. Multiphase Flow 33, 921934.
Djalili-Moghaddam, M. & Toll, S. 2005 A model for short-range interactions in fibre suspensions. J. Non-Newtonian Fluid Mech. 132, 7383.
Doi, M. & Edwards, S. F. 1986 The Theory of Polymer Dynamics. Oxford University Press.
Fan, Z. & Advani, S. G. 2007 Rheology of multiwall carbon nanotube suspensions. J. Rheol. 51, 585604.
Férec, J. & Ausias, G. 2015 Rheological modelling of non-dilute rod suspensions. In Rheology of Non-Spherical Particle Suspensions (ed. Chinesta, F. & Ausias, G.), pp. 77118. Elsevier.
Férec, J., Ausias, G., Heuzey, M. C. & Carreau, P. J. 2009 Modelling fibre interactions in semiconcentrated fibre suspensions. J. Rheol. 53, 4972.
Férec, J., Perrot, A. & Ausias, G. 2015 Toward modelling anisotropic yield stress and consistency induced by fibre in fibre-reinforced viscoplastic fluids. J. Non-Newtonian Fluid Mech. 220, 6976.
Folgar, F. & Tucker, C. L. 1984 Orientation behaviour of fibres in concentrated suspensions. J. Reinf. Plast. Compos. 3, 98119.
Grossberg, A. Yu. & Khokhlov, A. R. 1981 Statistical theory of polymeric lyotropic liquid crystals. Adv. Polym. Sci. 41, 5397.
Hinch, E. J. & Leal, L. G. 1972 The effect of Brownian motion on the rheological properties of a suspension of non-spherical particles. J. Fluid Mech. 52, 683712.
Hobbie, E. K. 2010 Shear rheology of carbon nanotube suspensions. Rheol. Acta 49, 323334.
Jeffery, G. B. 1922 The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. A 102, 161179.
Khalkhal, F., Carreau, P. J. & Ausias, G. 2011 Effect of flow history on linear viscoelastic properties and the evolution of the structure of multiwalled carbon nanotube suspensions in an epoxy. J. Rheol. 55, 153175.
Landau, L. D. & Lifshitz, E. M. 1987 Course of Theoretical Physics, Vol. 6: Fluid Mechanics, 2nd edn. Pergamon.
Larson, R. G. 1999 The Structure and Rheology of Complex Fluids. Oxford University Press.
Leal, L. G. & Hinch, E. J. 1971 The effect of weak Brownian rotations on particles in shear flow. J. Fluid Mech. 46, 685703.
Ma, W. K. A., Chinesta, F., Ammar, A. & Mackley, M. R. 2008 Rheological modelling of carbon nanotube aggregate suspensions. J. Rheol. 52, 13111330.
Michot, L. J., Baravian, C., Bihannic, I., Maddi, S., Moyne, C., Duval, J. F., Levitz, P. & Davidson, P. 2008 Sol–gel and isotropic/nematic transitions in aqueous suspensions of natural nontronite clay. Influence of particle anisotropy. 2. Gel structure and mechanical properties. Langmuir 25, 127139.
Mongruel, A. & Cloitre, M. 1999 Shear viscosity of suspensions of aligned non-Brownian fibres. Rheol. Acta 38, 451457.
Mueller, S., Llewellin, E. W. & Mader, H. M. 2010 The rheology of suspensions of solid particles. Proc. R. Soc. Lond. A 466, 12011228.
Natale, G., Heuzey, M. C., Carreau, P. J., Ausias, G. & Férec, J. 2014 Rheological modelling of carbon nanotube suspensions with rod–rod interactions. AIChE J. 60, 14761487.
Natale, G., Reddy, N. K., Ausias, G., Férec, J., Heuzey, M. C. & Carreau, P. J. 2015 Rheo-optical response of carbon nanotube suspensions. J. Rheol. 59, 499524.
Petrich, M. P. & Koch, D. L. 1998 Interactions between contacting fibres. Phys. Fluids 10, 21112113.
Petrie, C. J. 1999 The rheology of fibre suspensions. J. Non-Newtonian Fluid Mech. 87, 369402.
Pokrovskiy, V. N. 1978 Statistical Mechanics of Diluted Suspensions. Nauka (in Russian).
Rahatekar, S. S., Koziol, K. K., Kline, S. R., Hobbie, E. K., Gilman, J. W. & Windle, A. H. 2009 Length-dependent mechanics of carbon-nanotube networks. Adv. Mater. 21, 874878.
Rahatekar, S. S., Koziol, K. K. K., Butler, S. A., Elliott, J. A., Shaffer, M. S. P., Mackley, M. R. & Windle, A. H. 2006 Optical microstructure and viscosity enhancement for an epoxy resin matrix containing multiwall carbon nanotubes. J. Rheol. 50, 599610.
Russell, W. B., Saville, D. A. & Schowalter, W. R. 1989 Colloidal Dispersions. Cambridge University Press.
Saarinen, T., Haavisto, S., Sorvari, A., Salmela, J. & Seppälä, J. 2014 The effect of wall depletion on the rheology of microfibrillated cellulose water suspensions by optical coherence tomography. Cellulose 21, 12611275.
Schmid, C. F. & Klingenberg, D. J. 2000 Mechanical flocculation in flowing fiber suspensions. Phys. Rev. Lett. 84, 290293.
Servais, C., Månson, J. A. E. & Toll, S. 1999 Fibre–fibre interaction in concentrated suspensions: disperse fibres. J. Rheol. 43, 9911004.
Solomon, M. J. & Boger, D. V. 1998 The rheology of aqueous dispersions of spindle-type colloidal hematite rods. J. Rheol. 42, 929949.
Song, Y. S. & Youn, J. R. 2005 Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites. Carbon 43, 13781385.
Switzer, L. H. & Klingenberg, D. J. 2004 Flocculation in simulations of sheared fibre suspensions. Intl J. Multiphase Flow 30, 6787.
Toll, S. & Månson, J. A. E. 1994 Dynamics of a planar concentrated fibre suspension with non-hydrodynamic interaction. J. Rheol. 38, 985997.
Van der Schoot, P. & Odijk, T. 1992 Statistical theory and structure factor of a semidilute solution of rodlike macromolecules interacting by van der Waals forces. J. Chem. Phys. 97, 515524.
Wierenga, A., Philipse, A. P., Lekkerkerker, H. N. & Boger, D. V. 1998 Aqueous dispersions of colloidal boehmite: structure, dynamics, and yield stress of rod gels. Langmuir 14, 5565.
Wolf, B., White, D., Melrose, J. R. & Frith, W. J. 2007 On the behaviour of gelled fibre suspensions in steady shear. Rheol. Acta 46, 531537.
Yamane, Y., Kaneda, Y. & Doi, M. 1994 Numerical simulations of semi-dilute suspensions of rodlike particles in shear flow. J. Non-Newtonian Fluid Mech. 54, 405421.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Apparent yield stress in rigid fibre suspensions: the role of attractive colloidal interactions

  • S. Bounoua (a1), E. Lemaire (a1), J. Férec (a2), G. Ausias (a2), A. Zubarev (a3) and P. Kuzhir (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed