Skip to main content Accessibility help
×
Home

Anisotropic electro-osmotic flow over super-hydrophobic surfaces

  • SUPREET S. BAHGA (a1), OLGA I. VINOGRADOVA (a2) and MARTIN Z. BAZANT (a1) (a3)

Abstract

Patterned surfaces with large effective slip lengths, such as super-hydrophobic surfaces containing trapped gas bubbles, have the potential to greatly enhance electrokinetic phenomena. Existing theories assume either homogeneous flat surfaces or patterned surfaces with thin double layers (compared with the texture correlation length) and thus predict simple surface-averaged, isotropic flows (independent of orientation). By analysing electro-osmotic flows over striped slip-stick surfaces with arbitrary double-layer thickness, we show that surface anisotropy generally leads to a tensorial electro-osmotic mobility and subtle, nonlinear averaging of surface properties. Interestingly, the electro-osmotic mobility tensor is not simply related to the hydrodynamic slip tensor, except in special cases. Our results imply that significantly enhanced electro-osmotic flows over super-hydrophobic surfaces are possible, but only with charged liquid–gas interfaces.

Copyright

Corresponding author

Email address for correspondence: bazant@mit.edu

References

Hide All
Ajdari, A. 2001 Transverse electrokinetic and microfluidic effects in micropatterned channels: lubrication analysis for slab geometries. Phys. Rev. E 65, 016301.
Ajdari, A. & Bocquet, L. 2006 Giant amplification of interfacially driven transport by hydrodynamic slip: diffusio-osmosis and beyond. Phys. Rev. Lett. 96, 186102.
Batchelor, G. K. 1970 Slender-body theory for particles of arbitrary cross-section in stokes flow. J. Fluid Mech. 44, 419440.
Bazant, M. Z. & Vinogradova, O. I. 2008 Tensorial hydrodynamic slip. J. Fluid Mech. 613, 125134.
Bocquet, L. & Barrat, J. L. 2007 Flow boundary conditions from nano- to micro-scales. Soft Matter 3, 685693.
Buch, V., Milet, A., Vácha, R., Jungwirth, P. & Devlin, J. P. 2007 Water surface is acidic. PNAS 104, 7342.
Chu, K. T. & Bazant, M. Z. 2007 Surface conservation laws at microscopically diffuse interfaces. J. Colloid Interface Sci. 315, 319329.
Cottin-Bizonne, C., Barentin, C., Charlaix, E., Bocquet, L. & Barrat, J. L. 2004 Dynamics of simple liquids at heterogeneous surfaces: molecular-dynamic simulations and hydrodynamic description. Eur. Phys. J. E 15, 427.
Cottin-Bizonne, C., Barrat, J. L., Bocquet, L. & Charlaix, E. 2003 Low-friction flows of liquid at nanopatterned interfaces. Nat. Mater. 2, 237240.
Cottin-Bizonne, C., Cross, B., Steinberger, A. & Charlaix, E. 2005 Boundary slip on smooth hydrophobic surfaces: intrinsic effects and possible artifacts. Phys. Rev. Lett. 94, 056102.
Feuillebois, F., Bazant, M. Z. & Vinogradova, O. I. 2009 Effective slip over superhydrophobic surfaces in thin channels. Phys. Rev. Lett. 102, 026001.
Groot, S. R. De & Mazur, P. 1962 Non-Equilibrium Thermodynamics. Interscience.
van der Heyden, F. H. J., Bonthuis, D. J., Stein, D., Meyer, C. & Dekker, C. 2006 Electrokinetic energy conversion efficiency in nanofluidic channels. Nano Lett. 6, 22322237.
Huang, D. M., Cottin-Bizzone, C., Ybert, C. & Bocquet, L. 2008 Massive amplification of surface-induced transport at superhydrophobic surfaces. Phys. Rev. Lett. 20, 092105.
Joly, L., Ybert, C., Trizac, E. & Bocquet, L. 2004 Hydrodynamics within the electric double layer on slipping surfaces. Phys. Rev. Lett. 93, 257805.
Joseph, P., Cottin-Bizonne, C, Benoǐ, J. M., Ybert, C., Journet, C., Tabeling, P. & Bocquet, L. 2006 Slippage of water past superhydrophobic carbon nanotube forests in microchannels. Phys. Rev. Lett. 97, 156104.
Jungwirth, P. & Tobias, D. J. 2006 Specific ion effects at the air/water interface. Chem. Rev. 106, 12591281.
Kamrin, K., Bazant, M. Z. & Stone, H. A. 2009 Effective slip boundary conditions for arbitrary periodic surfaces: The surface mobility tensor, arXiv: 0911.1328.
Khair, A. S. & Squires, T. M. 2009 The influence of hydrodynamic slip on the electrophoretic mobility of a spherical colloidal particle. Phys. Fluids 21, 042001.
Krupenkin, T. N., Taylor, J. A., Schneider, T. M. & Yang, S. 2004 From rolling ball to complete wetting: the dynamic tuning of liquids on nanostructured surfaces. Langmuir 20, 38243827.
Lauga, E., Brenner, M. P. & Stone, H. A. 2007 Handbook of Experimental Fluid Dynamics, chap. 19, pp. 1219–1240. Springer.
Lauga, E. & Stone, H. A. 2003 Effective slip in pressure-driven stokes flow. J. Fluid Mech. 489, 5577.
Muller, V. M., Sergeeva, I. P., Sobolev, V. D. & Churaev, N. V. 1986 Boundary effects in the theory of electrokinetic phenomena. Colloid J. USSR 48, 606614.
Ou, J. & Rothstein, J. P. 2005 Direct velocity measurements of the flow past drag-reducing ultrahydrophobic surfaces. Phys. Fluids 17, 103606.
Ramos, A., González, A., Castellanos, A., Green, N. G. & Morgan, H. 2003 Pumping of liquids with AC voltages applied to asymmetric pairs of microelectrodes. Phys. Rev. E 67, 056302.
Sbragaglia, M. & Prosperetti, A. 2007 A note on the effective slip properties. Phys. Fluids 19, 043603.
Shchekin, A. K. & Borisov, V. V. 2005 Thermodynamics of nucleation on the particles of salts-strong electrolytes: the allowance for ion adsorption in the droplet surface layer. Colloid J. 67, 774787.
Sneddon, I. N. 1966 Mixed Boundary Value Problems in Potential Theory. North-Holland.
Squires, T. M. 2008 Electrokinetic flows over inhomogeneously slipping surfaces. Phys. Fluids 20, 092105.
Squires, T. M. & Quake, S. R. 2005 Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys. 77, 977.
Stone, H. A., Stroock, A. D. & Ajdari, A. 2004 Engineering flows in small devices. Annu. Rev. Fluid Mech. 36, 381411.
Takahashi, M. 2005 ζ potential of microbubbles in aqueous solutions: electrical properties of the gas–water interface. J. Phys. Chem. B 109, 2185821864.
Vinogradova, O. I. 1995 Drainage of a thin liquid film confined between hydrophobic surfaces. Langmuir 11, 2213.
Vinogradova, O. I. 1999 Slippage of water over hydrophobic surfaces. Intl J. Miner. Proc. 56, 3160.
Vinogradova, O. I., Bunkin, N. F., Churaev, N. V., Kiseleva, O. A., Lobeyev, A. V. & Ninham, B. W. 1995 Submicrocavity structure of water between hydrophobic and hydrophilic walls as revealed by optical cavitation. J. Colloid Interface Sci. 173, 443447.
Vinogradova, O. I., Koynov, K., Best, A. & Feuillebois, F. 2009 Direct measurements of hydrophobic slippage using double-focus fluorescence cross-correlation. Phys. Rev. Lett. 102, 118302.
Vinogradova, O. I. & Yakubov, G. E. 2003 Dynamic effects on force measurements. 2. Lubrication and the atomic force microscope. Langmuir 19, 12271234.
Zangi, R. & Engberts, J. B. F. N. 2005 Physisorption of hydroxide ions from aqueous solution to a hydrophobic surface. J. Am. Chem. Soc. 127, 22722276.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed