Skip to main content Accessibility help
×
Home

Anisotropic clustering of inertial particles in homogeneous shear flow

  • P. GUALTIERI (a1), F. PICANO (a1) and C. M. CASCIOLA (a1)

Abstract

Recently, clustering of inertial particles in turbulence has been thoroughly analysed for statistically homogeneous isotropic flows. Phenomenologically, spatial homogeneity of particle configurations is broken by the advection of a range of eddies determined by the Stokes relaxation time of the particles. This in turn results in a multi-scale distribution of local particle concentration and voids. Much less is known concerning anisotropic flows. Here, by addressing direct numerical simulations (DNS) of a statistically steady particle-laden homogeneous shear flow, we provide evidence that the mean shear preferentially orients particle patterns. By imprinting anisotropy on large-scale velocity fluctuations, the shear indirectly affects the geometry of the clusters. Quantitative evaluation is provided by a purposely designed tool, the angular distribution function (ADF) of particle pairs, which allows to address the anisotropy content of particle aggregates on a scale-by-scale basis. The data provide evidence that, depending on the Stokes relaxation time of the particles, anisotropic clustering may occur even in the range of scales in which the carrier phase velocity field is already recovering isotropy. The strength of the singularity in the anisotropic component of the ADF quantifies the level of fine-scale anisotropy, which may even reach values of more than 30% direction-dependent variation in the probability to find two closeby particles at viscous-scale separation.

Copyright

Corresponding author

Email address for correspondence: p.gualtieri@caspur.it

References

Hide All
Ahmed, A. M. & Elghobashi, S. 2000 On the mechanism of modifying the structure of turbulent homogeneous shear flows by dispersed particles. Phys. Fluids 12, 2906.
Ahmed, A. M. & Elghobashi, S. 2001 Direct numerical simulation of particle dispersion in homogeneous turbulent shear flows. Phys. Fluids 13, 3346.
Antonia, R. A. & Kim, J. 1994 A numerical study of local isotropy of turbulence. Phys. Fluids 6 (2), 834841.
Balachandar, S. & Maxey, M. R. 1989 Methods for evaluating fluid velocities in spectral simulations of turbulence. J. Comput. Phys. 83, 96125.
Balkovsky, E., Falkovich, G. & Fouxon, A. 2001 Intermittent distribution of inertial particles in turbulent flows. Phys. Rev. Lett. 86, 2790.
Bec, J., Biferale, L., Cencini, M., Lanotte, A., Musacchio, S. & Toschi, F. 2007 Heavy particle concentration in turbulence at dissipative and inertial scales. Heavy particle concentration in turbulence at dissipative and inertial scales 98 (8), 084502.
Biferale, L. & Procaccia, I. 2005 Anisotropy in turbulent flows and in turbulent transport. Phys. Rep. 414, 43.
Bracco, A., Chavanis, P. H., Provenzale, A. & Spiegel, E. A. 1999 Particle aggregation in a turbulent Keplerian flow. Phys. Fluids 11, 2280.
Brooke, J. W., Kontomaris, K., Hanratty, T. J. & McLaughlin, J. B. 1992 Turbulent deposition and trapping of aerosols at wall. Phys. Fluids A 6 (4), 825834.
Casciola, C. M., Gualtieri, P., Jacob, B. & Piva, R. 2007 The residual anisotropy of small scales in high shear turbulence. Phys. Fluids 19, 101704.
Corrsin, S. 1958 Local isotropy in turbulent shear flow. Res. Memo. RM 58B11, p. 1. NACA.
Falkovich, G., Fouxon, A. & Stepanov, M. 2002 Acceleration of rain initiation by cloud turbulence. Nature 419, 151.
George, W. K. & Hussein, H. J. 1991 Locally axisymmetric turbulence. J. Fluid. Mech. 233, 123.
Grassberger, P. & Procaccia, I. 1983 Characterization of strange attractors. Phys. Rev. Lett. 50, 346.
Gualtieri, P., Casciola, C. M., Benzi, R., Amati, G. & Piva, R. 2002 Scaling laws and intermittency in homogeneous shear flow. Phys. Fluids 14, 583.
Gualtieri, P., Casciola, C. M., Benzi, R. & Piva, R. 2007 Preservation of statistical properties in large eddy simulation of shear turbulence. J. Fluid. Mech. 592, 471494.
Jacob, B., Casciola, C. M., Talamelli, A. & Alfredsson, P. H. 2008 Scaling of mixed structure functions in turbulent boundary layers. Phys. Fluids 20, 045101.
Kaftori, D., Hetsroni, G. & Benerjee, S. 1995 a Particle behavior in the turbulent boundary layer. Part 1. Motion, deposition, and entrainment. Phys. Fluids 7 (5), 10951106.
Kaftori, D., Hetsroni, G. & Benerjee, S. 1995 b Particle behavior in the turbulent boundary layer. Part 2. Velocity and distribution profiles. Phys. Fluids 7 (5), 11071121.
Károlyi, G., Péntek, Á., Scheuring, I., Tél, T. & Toroczkai, Z. 2000 Chaotic flow: the physics of species coexistence. Proc. Natl Acad. Sci. 97, 13661.
Marchioli, C. & Soldati, A. 2002 Mechanisms for particle transfer and segregation in a turbulent boundary layer. J. Fluid. Mech. 468, 283.
Maxey, M. R. & Riley, J. J. 1983 Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26, 2437.
Portela, L. M., Cota, P. & Oliemans, R. V. A. 2002 Numerical study of the near-wall behaviour of particles in turbulent pipe flow. Powder Technol. 125, 149157.
Reade, W. C. & Collins, L. R. 2002 Effect of preferential concentration on turbulent collision rates. Phys. Fluids 12, 2530.
Reeks, M. W. 1983 The transport of discrete particles in inhomogeneous turbulence. The transport of discrete particles in inhomogeneous turbulence 14 (6), 729739.
Righetti, M. & Romano, G. P. 2004 Particle–fluid interaction in a plane near-wall turbulent flow. J. Fluid. Mech. 505, 93121.
Rogallo, R. S. 1981 Numerical experiments in homogeneous turbulence. Tech Memo. 81315. NASA.
Rouson, D. W. I. & Eaton, J. K. 2001 On the preferential concentration of solid particles in turbulent channel flow. J. Fluid. Mech. 428, 149.
Shaw, R. A. 2003 Particle-turbulence interactions in atmospheric clouds. Annu. Rev. Fluid Mech. 35, 183.
Shen, X. & Warhaft, Z. 2000 The anisotropy of small scale structures in high Reynolds number (re λ ~ 1000) turbulent shear flow. The anisotropy of small scale structures in high Reynolds number (re λ ~ 1000) turbulent shear flow 12 (11), 29762989.
Shotorban, B. & Balachandar, S. 2006 Particle concentration in homogeneous shear turbulence simulated via Lagrangian and equilibrium Eulerian approaches. Phys. Fluids 18, 065105.
Shotorban, B., Mashayek, F. & Pandya, R. V. R. 2003 Temperature statistics in particle-laden turbulent homogeneous shear flow. Intl J. Multiphase Flow 29, 1333.
Squires, K. D. & Eaton, J. K. 1991 Preferential concentration of particles by turbulence. Phys. Fluids A 3, 1169.
Sundaram, S. & Collins, L. R. 1997 Collision statistics in an isotropic particle-laden turbulent suspension. Part 1. Direct numerical simulations. J. Fluid. Mech. 335, 75.
Uberoi, M. S. 1957 Equipartition of energy and local isotropy in turbulent flows. Equipartition of energy and local isotropy in turbulent flows 28 (10), 11651170.
Warhaft, Z. & Shen, X. 2002 On higher order mixed structure functions in laboratory shear flow. Phys. Fluids 14, 2432.
Yeung, P. K. & Pope, S. B. 1988 An algorithm for tracking fluid particles in numerical simulations of homogeneous turbulence. J. Comput. Phys. 79, 373416.
Yoshimoto, H. & Goto, S. 2007 Self-similar clustering of inertial particles in homogeneous turbulence. J. Fluid. Mech. 577, 275286.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Anisotropic clustering of inertial particles in homogeneous shear flow

  • P. GUALTIERI (a1), F. PICANO (a1) and C. M. CASCIOLA (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.