Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-23T07:17:23.106Z Has data issue: false hasContentIssue false

Analysis of turbulence in the orthonormal wavelet representation

Published online by Cambridge University Press:  26 April 2006

Charles Meneveau
Affiliation:
Center for Turbulence Research, Stanford University, Stanford, CA 94305–3030, USA Present address: Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A decomposition of turbulent velocity fields into modes that exhibit both localization in wavenumber and physical space is performed. We review some basic properties of such a decomposition, the wavelet transform. The wavelet-transformed Navier—Stokes equations are derived, and we define new quantities such as e(r, x), t(r, x) and π(r, x) which are the kinetic energy, the transfer of kinetic energy and the flux of kinetic energy through scale r at position x. The discrete version of e(r, x) is computed from laboratory one-dimensional velocity signals in a boundary layer and in a turbulent wake behind a circular cylinder. We also compute e(r, x), t(r, x) and π(r, x) from three-dimensional velocity fields obtained from direct numerical simulations. Our findings are that the localized kinetic energies become very intermittent in x at small scales and exhibit multifractal scaling. The transfer and flux of kinetic energy are found to fluctuate greatly in physical space for scales between the energy containing scale and the dissipative scale. These fluctuations have mean values that agree with their traditional counterparts in Fourier space, but have standard deviations that are much larger than their mean values. In space (at each scale r), we find exponential tails for the probability density functions of these quantities. We then study the nonlinear advection terms in more detail and define the transfer T(r|r′, x) between scale r and all scales smaller than r′, at location x. Then we define πsg(r, x), the flux of energy caused only by the scales smaller than r, at x, and find negative values for πsg(r, x), at almost 50% of the physical space at every scale (backscatter). We propose the inclusion of local backscatter in the phenomenological cascade models of intermittency, by allowing some energy to flow from small to large scales in the context of a multiplicative process in the inertial range.

Type
Research Article
Copyright
© 1991 Cambridge University Press

References

Arneodo, A., Grasseau, G. & Holschneider, M. 1988 Phys. Rev. Lett. 61, 2287.
Barcy, E., Arneodo, A., Frisch, U., Gagne, Y. & Hopfinger, E. 1990 In Turbulence and Coherent Structures (ed. O. Metais & M. Lesieur), p. 203. Kluwer.
Batchelor, G. K. & Townsend, A. A. 1949 Proc. R. Soc. Lond. A 199, 238.
Benzi, R., Paladin, G., Parisi, G. & Vulpiani, A. 1984 J. Phys. A 17, 3521.
Chhabra, A. & Sbeenivasan, K. R. 1991 Phys. Rev. A 43, 1114.
Daubechies, I. 1988 Commun. Pure Appl. Math. 41, 909.
Domaradski, J. A. & Rogallo, R. 1990 Phys. Fluids A 2, 413.
Everson, R., Sirovich, L. & Sreenivasan, K. R. 1990 Phys. Lett. A 145, 314.
Farge, M. 1992 Ann. Rev. Fluid Mech. (to appear).
Fabge, M. & Rabreau, G. 1988 C. R. Acad. Sci. Paris 2, 307, 1479.
Frisch, U., Sulem, P. L. & Nelkin, M. 1978 J. Fluid Mech. 87, 719.
Gagne, Y. 1989 PhD thesis, University of Grenoble.
Grossmann, A. & Morlet, J. 1984 SIAM J. Math. Anal. 15, 723.
Kennedy, D. A. & Corrsin, S. 1961 J. Fluid Mech. 10, 366.
Kolmogorov, A. N. 1941 C. R. Acad. Sci. USSR 30, 301.
Kolmogorov, A. N. 1962 J. Fluid Mech. 62, 82.
Kraichnan, H. 1974 J. Fluid Mech. 62, 305.
Kraichnan, H. 1976 J. Atmos. Sci. 33, 1521.
Kronland-Martinet, R., Morlet, J. & Grossmann, A. 1987 Intl J. Patt. Rec. Art. Intel. 1, 97.
Leith, C. E. 1990 Phys. Fluids A 2, 297.
Leonard, A. 1974 Adv. Geophys. 18A, 237.
Leslie, D. C. & Quarini, G. L. 1979 J. Fluid Mech. 91, 65.
Lumley, J. 1967 In Atmospheric Turbulence and Radio Wave Propagation (ed. A. M. Yaglom & J. L. Tatarsky), p. 1668. Moscow.
Mallat, S. J. 1989 IEEE Patt. Anal. Mach. M. 11, 674.
Mandelbrot, B. B. 1974 J. Fluid Mech. 62, 331.
Meneveau, C. 1990 CTR manuscript 120 (available from the author).
Meneveau, C. 1991 Phys. Rev. Lett. 66, 1450.
Meneveau, C. & Chhabba, A. 1990 Physica A 164, 564.
Meneveau, C. & Sreenivasan, K. R. 1987a Nucl. Phys. B Proc. Suppl. 2, 49.
Meneveau, C. & Sreenivasan, K. R. 1987b Phys. Rev. Lett. 59, 1424.
Meneveau, C. & Sreenivasan, K. R. 1991 J. Fluid Mech. 224, 429.
Meyer, Y. 1986 In Seminaire Bourbaki, p. 662.
Min Duong-Van 1987 Nucl. Phys. B Proc. Suppl. 2, 521.
Nakano, T. 1988 Phys. Fluids 31, 1420.
Narashima, R. 1989 In Whither Turbulence, or Turbulence at Crossroads (ed. J. L. Lumley). Springer.
Nelkin, M. 1989 J. Stat. Phys. 54, 1.
Novikov, E. A. 1971 Appl. Math. Mech. 35, 231.
Orszag, S. A. & Patterson, G. S. 1972 Phys. Rev. Lett. 28, 76.
Parisi, G. & Frisch, U. 1985 In Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics, p. 84. North-Holland.
Piomelli, U., Cabot, W. H., Moins, P. & Lee, S. 1991 Phys. Fluids A 3, 1766.
Rogallo, R. 1982 NASA Tech. Memo. 81315.
Rogallo, R. & Moin, P. 1984 Ann. Rev. Fluid Mech. 16, 99.
Rogers, M. & Moin, P. 1986 J. Fluid Mech. 176, 33.
Rogers, M., Moin, P. & Reynolds, W. C. 1976 TF25. Dept. of Mech. Engng, Stanford University, CA 94305.
rose, H. 1977 J. Fluid Mech. 81, 719.
Siggia, E. D. 1977 Phys. Rev. A 15, 1730.
She, Z. S. 1991 Phys. Rev. Lett. 66, 600.
Stewart, I. 1989 Nature 338, 18.
Sulem, P. & Frisch, U. 1975 J. Fluid Mech. 72, 417.
Yamada, M. & Ohkitani, K. 1990 Prog. Theor. Phys. 83, 819.
Zimin, V. D. 1981 Izv. Atmos. Oceanic Phys. 17, 941.