Skip to main content Accessibility help

Analysis of the two-dimensional dynamics of a Mach 1.6 shock wave/transitional boundary layer interaction using a RANS based resolvent approach

  • N. Bonne (a1), V. Brion (a1), E. Garnier (a1), R. Bur (a1), P. Molton (a1), D. Sipp (a1) and L. Jacquin (a2)...


A two-dimensional analysis of the resolvent spectrum of a Mach 1.6 transitional boundary layer impacted by an oblique shock wave is carried out. The investigation is based on a two-dimensional mean flow obtained by a RANS model that includes a transition criterion. The goal is to evaluate whether such a low cost RANS based resolvent approach is capable of describing the frequencies and physics involved in this transitional boundary layer/shock-wave interaction. Data from an experiment and a companion large eddy simulation (LES) are utilized as reference for the validation of the method. The flow is characterized by a laminar boundary layer upstream, a laminar separation bubble (LSB) in the interaction region and a turbulent boundary layer downstream. The flow exhibits low amplitude unsteadiness in the LSB and at the reflected shock wave with three particular oscillation frequencies, qualified as low, medium and high in reference to their range in Strouhal number, here based on free stream velocity and LSB length ( $S_{t}=0.03{-}0.11$ , 0.3–0.4 and 2–3 respectively). Through the resolvent analysis this dynamics is found to correspond to an amplifier behaviour of the flow. The resolvent responses match the averaged Fourier mode of the time dependent flow field, here described by the LES, with a close agreement in frequency and spatial distribution, thereby validating the resolvent approach. The low frequency dynamics relates to a pseudo-resonance process that sequentially implies the amplification in the separated shear layer of the LSB, an excitation of the shock foot and a backward travelling density wave. As this wave hits back the separation point the amplification in the shear layer starts again and loops. The medium and high frequency modes relate to the periodic expansion/reduction of the bubble and to the turbulent fluctuations at the reattachment point of the bubble, respectively.


Corresponding author

Email address for correspondence:


Hide All
Abu-Ghannam, B. J. & Shaw, R. 1980 Natural transition of boundary layers the effects of turbulence, pressure gradient, and flow history. J. Mech. Engng Sci. 22 (5), 213228.
Agostini, L., Larchevêque, L. & Dupont, P. 2015 Mechanism of shock unsteadiness in separated shock/boundary–layer interactions. Phys. Fluids 27 (12), 126103.
Agostini, L., Larchevêque, L., Dupont, P., Debiève, J.-F. & Dussauge, J.-P. 2012 Zones of influence and shock motion in a shock/boundary-layer interaction. AIAA J. 50 (6), 13771387.
Alam, M. & Sandham, N. D. 2000 Direct numerical simulation of short laminar separation bubbles with turbulent reattachment. J. Fluid Mech. 403, 223250.
Arnal, D. 1984 Special course on stability and transition of laminar flow. In AGARD Special Course at the von K.rm.n Institute, AGARD Report No 709, pp. 2630.
Arnal, D., Houdeville, R., Séraudie, A. & Vermeersch, O. 2011 Overview of laminar-turbulent transition investigations at Onera Toulouse. In 41st AIAA Fluid Dynamics Conference and Exhibit, p. 3074. AIAA.
Babinsky, H. & Harvey, J. K. 2011 Shock Wave-Boundary-Layer Interactions, vol. 32. Cambridge University Press.
Beneddine, S., Sipp, D., Arnault, A., Dandois, J. & Lesshafft, L. 2016 Conditions for validity of mean flow stability analysis. J. Fluid Mech. 798, 485504.
Boris, J. P., Grinstein, F. F., Oran, E. S. & Kolbe, R. L. 1992 New insights into large eddy simulation. Fluid Dyn. Res. 10 (4–6), 199228.
Borodulin, V. I., Kachanov, Y. S. & Roschektayev, A. P. 2011 Experimental detection of deterministic turbulence. J. Turbul. (12), N23.
Brandt, L., Sipp, D., Pralits, J. O. & Marquet, O. 2011 Effect of base-flow variation in noise amplifiers: the flat-plate boundary layer. J. Fluid Mech. 687, 503528.
Bur, R. & Garnier, E. 2016 Transition effect on a shock-wave/boundary layer interaction. In The CAero2 Platform: Dissemination of Computational Case Studies in Aeronautics, ECCOMAS Congress 2016, Crete Island (Greece), June 5–10, 2016. AIAA.
Casalis, G. & Arnal, D.1996 Elfin ii subtask 3: Database method–development and validation of the simplified method for pure crossflow instability at low speed. ELFIN II-European Laminar Flow Investigation. Tech. Rep. (145).
Chang, C.-L. & Malik, M. R. 1994 Oblique-mode breakdown and secondary instability in supersonic boundary layers. J. Fluid Mech. 273, 323360.
Clemens, N. T. & Narayanaswamy, V. 2014 Low-frequency unsteadiness of shock wave/turbulent boundary layer interactions. Annu. Rev. Fluid Mech. 46, 469492.
Cliquet, J., Houdeville, R. & Arnal, D. 2008 Application of laminar-turbulent transition criteria in Navier–Stokes computations. AIAA J. 46 (5), 11821190.
Crouch, J. D., Garbaruk, A., Magidov, D. & Travin, A. 2009 Origin of transonic buffet on aerofoils. J. Fluid Mech. 628, 357369.
Délery, J., Marvin, J. G. & Reshotko, E.1986 Shock-wave boundary layer interactions. Tech. Rep. DTIC Document.
Dolling, D. S. 2001 Fifty years of shock-wave/boundary-layer interaction research: What next? AIAA J. 39 (8), 15171531.
Dumoulin, A.2004 Validation de modeles de transition dans le code Navier–Stokes elsa. Rapport de stage ONERA.
Dupont, P., Haddad, C. & Debiève, J. F. 2006 Space and time organization in a shock-induced separated boundary layer. J. Fluid Mech. 559, 255277.
Dussauge, J.-P., Dupont, P. & Debiève, J.-F. 2006 Unsteadiness in shock wave boundary layer interactions with separation. Aerosp. Sci. Technol. 10 (2), 8591.
Farrell, B. F. & Ioannou, P. J. 1993 Stochastic forcing of the linearized Navier–Stokes equations. Phys. Fluids A 5 (11), 26002609.
Ganapathisubramani, B., Clemens, N. T. & Dolling, D. S. 2007 Effects of upstream boundary layer on the unsteadiness of shock-induced separation. J. Fluid Mech. 585, 369394.
Ganapathisubramani, B., Clemens, N. T. & Dolling, D. S. 2009 Low-frequency dynamics of shock-induced separation in a compression ramp interaction. J. Fluid Mech. 636, 397425.
Garnier, E., Adams, N. & Sagaut, P. 2009 Large Eddy Simulation for Compressible Flows. Springer Science & Business Media.
Gleyzes, C., Cousteix, J. & Bonnet, J. L. 1985 Theoretical and experimental study of low reynolds number transitional separation bubbles. In Conference on Low Reynolds Number Airfoil Aerodynamics, Notre Dame, IN, pp. 137152. AIAA.
Grilli, M., Schmid, P. J., Hickel, S. & Adams, N. A. 2012 Analysis of unsteady behaviour in shockwave turbulent boundary layer interaction. J. Fluid Mech. 700, 1628.
Langtry, R. B.2006 A correlation-based transition model using local variables for unstructured parallelized CFD codes. PhD thesis, Universität Stuttgart.
Larchevêque, L. 2016 Low- and medium-frequency unsteadinesses in a transitional shock–boundary reflection with separation. In 54th AIAA Aerospace Sciences Meeting, p. 1833. AIAA.
Mack, L. M.1984 Boundary-layer linear stability theory. Tech. Rep. DTIC Document.
Marxen, O., Lang, M., Rist, U. & Wagner, S. 2003 A combined experimental/numerical study of unsteady phenomena in a laminar separation bubble. Flow Turbul. Combust. 71 (1–4), 133146.
Marxen, O., Rist, U. & Wagner, S. 2004 Effect of spanwise-modulated disturbances on transition in a separated boundary layer. AIAA J. 42 (5), 937944.
Mary, I., Sagaut, P. & Deville, M. 2000 An algorithm for unsteady viscous flows at all speeds. Intl J. Numer. Methods Fluids 34 (5), 371401.
Mettot, C.2013 Stabilité linéaire, sensibilité et contrôle passif d’écoulements turbulents par différences finies. PhD thesis, Ecole Polytechnique X.
Nichols, J. W., Larsson, J., Bernardini, M. & Pirozzoli, S. 2017 Stability and modal analysis of shock/boundary layer interactions. Theor. Comput. Fluid Dyn. 31 (1), 3350.
Pagella, A., Babucke, A. & Rist, U. 2004 Two-dimensional numerical investigations of small-amplitude disturbances in a boundary layer at ma = 4. 8: compression corner versus impinging shock wave. Phys. Fluids 16 (7), 22722281.
Pagella, A., Rist, U. & Wagner, S. 2002 Numerical investigations of small-amplitude disturbances in a boundary layer with impinging shock wave at ma = 4. 8. Phys. Fluids 14 (7), 20882101.
Piponniau, S., Dussauge, J. P., Debieve, J. F. & Dupont, P. 2009 A simple model for low-frequency unsteadiness in shock-induced separation. J. Fluid Mech. 629, 87108.
Pirozzoli, S. & Grasso, F. 2006 Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction at m = 2. 25. Phys. Fluids 18 (6), 065113.
Rist, U. 2003 Instability and transition mechanisms in laminar separation bubbles. Low Reynolds Number Aerodynamics on Aircraft Including Applications in Emerging UAV Technology.
Robinet, J-Ch. 2007 Bifurcations in shock-wave/laminar-boundary–layer interaction: global instability approach. J. Fluid Mech. 579, 85112.
Samimy, M., Arnette, S. A. & Elliott, G. S. 1994 Streamwise structures in a turbulent supersonic boundary layer. Phys. Fluids 6 (3), 10811083.
Sansica, A., Sandham, N. D. & Hu, Z. 2014 Forced response of a laminar shock-induced separation bubble. Phys. Fluids 26 (9), 093601.
Sansica, A., Sandham, N. D. & Hu, Z. 2016 Instability and low-frequency unsteadiness in a shock-induced laminar separation bubble. J. Fluid Mech. 798, 526.
Sartor, F.2014 Instationnarités dans les interactions choc/couche-limite en régime transsonique: étude expérimentale et analyse de stabilité. PhD thesis, Aix-Marseille Université.
Sartor, F., Mettot, C., Bur, R. & Sipp, D. 2015 Unsteadiness in transonic shock-wave/boundary-layer interactions: experimental investigation and global stability analysis. J. Fluid Mech. 781, 550577.
Schlichting, H. 1979 Boundary-Layer Theory, 6th edn; translation by Kestin J. chaps 14 and 20. AIAA.
Spalart, P. R. & Allmaras, S. R. 1992 A one-equation turbulence model for aerodynamic flows. In 30th Aerospace Sciences Meeting and Exhibit, p. 439. AIAA.
Touber, E. & Sandham, N. D. 2009 Large-eddy simulation of low-frequency unsteadiness in a turbulent shock-induced separation bubble. Theor. Comput. Fluid Dyn. 23 (2), 79107.
Touber, E. & Sandham, N. D. 2011 Low-order stochastic modelling of low-frequency motions in reflected shock-wave/boundary-layer interactions. J. Fluid Mech. 671, 417465.
Ünalmis, O. H. & Dolling, D. S. 1994 Decay of wall pressure field and structure of a Mach 5 adiabatic turbulent boundary layer. In AIAA, Fluid Dynamics Conference, 25th, Colorado Springs, CO. AIAA.
Windte, J., Scholz, U. & Radespiel, R. 2006 Validation of the RANS-simulation of laminar separation bubbles on airfoils. Aerosp. Sci. Technol. 10 (6), 484494.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Related content

Powered by UNSILO

Analysis of the two-dimensional dynamics of a Mach 1.6 shock wave/transitional boundary layer interaction using a RANS based resolvent approach

  • N. Bonne (a1), V. Brion (a1), E. Garnier (a1), R. Bur (a1), P. Molton (a1), D. Sipp (a1) and L. Jacquin (a2)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.