Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-24T08:01:15.524Z Has data issue: false hasContentIssue false

Analysis of the choking condition of one-dimensional diabatic flows with wall friction

Published online by Cambridge University Press:  12 October 2023

Alessandro Ferrari*
Affiliation:
Energy Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino 10129, Italy
Oscar Vento
Affiliation:
Energy Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino 10129, Italy
*
Email address for correspondence: alessandro.ferrari@polito.it

Abstract

The choking condition of a one-dimensional steady-state diabatic flow, with wall friction, of a perfect gas through a constant cross-section pipe has been analysed by applying a recent analytical solution. Such a choking condition can be achieved for an initially subsonic flow and a supersonic one, even when the heat flux goes from the fluid to the wall. Entropy–enthalpy diagrams have been analysed, and a universal choking condition for compressible diabatic flows with wall friction has been determined. The analytical solution of a supersonic flow, in which a normal shock occurs, has been obtained for a diabatic flow with wall friction and compared with the results of a numerical model.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afroosheh, M., Vakilimoghaddam, F. & Paraschivoiu, M. 2017 Boundary layer effects on the critical nozzle of hydrogen sonic jet. Intl J. Hydrogen Energy 42 (11), 74407446, special issue on The 6th International Conference on Hydrogen Safety (ICHS 2015), 19–21 October 2015, Yokohama, Japan.CrossRefGoogle Scholar
Baccarella, D., Liu, Q., McGann, B., Lee, G. & Lee, T. 2021 Isolator-combustor interactions in a circular model scramjet with thermal and non-thermal choking-induced unstart. J. Fluid Mech. 917, A38.CrossRefGoogle Scholar
Bernstein, A., Heiser, W.H. & Hevenor, C.M. 1967 Compound-compressible nozzle flow. Trans. ASME J. Appl. Mech. 34, 548554.CrossRefGoogle Scholar
Bizzozero, M., Sato, Y. & Sayed, M.A. 2021 Aerodynamic study of a hyperloop pod equipped with compressor to overcome the Kantrowitz limit. J. Wind Engng Ind. Aerodyn. 218, 104784.CrossRefGoogle Scholar
Crocco, L. 1958 One-dimensional treatment of steady gas dynamics. In Fundamentals of Gas Dynamics (ed. H.W. Emmons). Princeton University Press.CrossRefGoogle Scholar
Emmons, H.W. 1958 Fundamentals of Gas Dynamics. Princeton University Press.CrossRefGoogle Scholar
Ferrari, A. 2021 a Analytical solutions for one-dimensional diabatic flows with wall friction. J. Fluid Mech. 918, A32.CrossRefGoogle Scholar
Ferrari, A. 2021 b Exact solutions for quasi-one-dimensional compressible viscous flows in conical nozzles. J. Fluid Mech. 915, A1.CrossRefGoogle Scholar
Ferrari, A., Vento, O. & Zhang, T. 2021 The polytropic approach in modeling compressible flows through constant cross-section pipes. Trans. ASME J. Fluids Engng 143 (9), 091502.CrossRefGoogle Scholar
Goethert, B.H. 1962 High altitude and space simulation testing. Am. Rocket Soc. J. 32 (6), 872882.Google Scholar
Hirsch, C. 1988 Numerical Computation of Internal and External Flows. Princeton University Press.Google Scholar
Kantrowitz, A.R. & Donaldson, C. 1945 Preliminary investigation of supersonic diffusers. NACA Tech. Note NACA-ACR-L5D20.Google Scholar
Kubo, K., Miyazato, Y. & Matsuo, K. 2010 Study of choked flows through a convergent nozzle. J. Therm. Sci. 19, 193197.CrossRefGoogle Scholar
Laurence, S.J., Karl, S., Martinez Schramm, J. & Hannemann, K. 2013 Transient fluid-combustion phenomena in a model scramjet. J. Fluid Mech. 722, 85120.CrossRefGoogle Scholar
Lijo, V., Kim, H.D. & Setoguchi, T. 2010 Analysis of choked viscous flows through a constant area duct. Proc. Inst. Mech. Engrs 224, 11511162.CrossRefGoogle Scholar
Matsuo, K., Miyazato, Y. & Kim, H.D. 1999 Shock train and pseudo-shock phenomena in internal gas flows. Prog. Aerosp. Sci. 35 (1), 33100.CrossRefGoogle Scholar
Miyazato, Y., Sakamoto, S. & Matsuo, K. 2007 An experiment on choking phenomena in supersonic fanno flows. Trans. Japan Soc. Mech. Engrs 73, 23932396.CrossRefGoogle Scholar
Miyazato, Y., Yonamine, M. & Masuda, M. 2005 Theoretical analysis on choking of convergent nozzle flows with boundary layers. Trans. Japan Soc. Mech. Engrs 71, 24802485.CrossRefGoogle Scholar
Moase, W.H., Brear, M.J. & Manzie, C. 2007 The forced response of choked nozzles and supersonic diffusers. J. Fluid Mech. 585, 281304.CrossRefGoogle Scholar
Neumann, E.P. & Lustwerk, F. 1949 Supersonic diffusers for wind tunnels. Trans. ASME J. Appl. Mech. 16 (2), 195202.CrossRefGoogle Scholar
Riggins, D., Tackett, R., Taylor, T. & Auslender, A. 2006 Thermodynamic analysis of dual-mode scramjet engine operation and performance. In 14th AIAA/AHI International Space Planes and Hypersonics Systems and Technologies Conference, Canberra, 2006-8059. AIAA.CrossRefGoogle Scholar
Shapiro, A. 1953 The Dynamics and Thermodynamics of Compressible Fluid Flow, vol. 1. John Wiley & Sons.Google Scholar
Toro, E. 2009 Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer.CrossRefGoogle Scholar