Hostname: page-component-84b7d79bbc-lrf7s Total loading time: 0 Render date: 2024-07-28T10:09:37.408Z Has data issue: false hasContentIssue false

Unsteady dissipation scaling in static- and active-grid turbulence

Published online by Cambridge University Press:  03 February 2023

Yulin Zheng
Affiliation:
Department of Aerospace Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
Kohtaro Nakamura
Affiliation:
Department of Aerospace Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
Koji Nagata*
Affiliation:
Department of Aerospace Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
Tomoaki Watanabe
Affiliation:
Education and Research Center for Flight Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
*
Email address for correspondence: nagata@nagoya-u.jp

Abstract

A new time-dependent analysis of the global and local fluctuating velocity signals in grid turbulence is conducted to assess the scaling laws for non-equilibrium turbulence. Experimental datasets of static- and active-grid turbulence with different Rossby numbers $R_o({=}U/\varOmega M$: $U$ is the mean velocity, $\varOmega$ is the mean rotation rate and $M$ is the grid mesh size) are considered. Although the global (long-time-averaged) non-dimensional dissipation rate $C_\varepsilon$ is independent of the Reynolds number $Re_\lambda$ based on the global Taylor microscale, the local (short-time-averaged) non-dimensional dissipation rate $\left \langle C_\varepsilon (t_i) \right \rangle$ ($t_i$ is the local time) both in the static- and active-grid turbulence clearly show the non-equilibrium scaling $\left \langle C_\varepsilon (t_i)\right \rangle / \sqrt {Re_0} \propto \left \langle Re_\lambda (t_i) \right \rangle ^{-1}$ ($\left \langle Re_\lambda (t_i) \right \rangle$ and $Re_0$ are the Reynolds numbers based on the local Taylor microscale $\lambda (t_i)$ and the global integral length scale, respectively), which has only been confirmed for global statistics in the near field of grid turbulence. The local value of $\left \langle L(t_i) / \lambda (t_i) \right \rangle$ ($L(t_i)$ is the local integral length scale) shifts from the equilibrium to non-equilibrium scaling as $\left \langle Re_\lambda (t_i) \right \rangle$ increases, further confirming that the non-equilibrium scalings are recovered for local statistics both in the static- and active-grid turbulence. The local values of $\left \langle C_\varepsilon (t_i) \right \rangle$ and $\left \langle L(t_i) / \lambda (t_i) \right \rangle$ follow the theoretical predictions for global statistics (Bos & Rubinstein, Phys. Rev. Fluids, vol. 2, 2017, 022601).

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alves Portela, F., Papadakis, G. & Vassilicos, J.C. 2018 Turbulence dissipation and the role of coherent structures in the near wake of a square prism. Phys. Rev. Fluids 3 (12), 124609.CrossRefGoogle Scholar
Bos, W.J.T. 2020 Production and dissipation of kinetic energy in grid turbulence. Phys. Rev. Fluids 5 (10), 104607.CrossRefGoogle Scholar
Bos, W.J.T. & Rubinstein, R. 2017 Dissipation in unsteady turbulence. Phys. Rev. Fluids 2 (2), 022601.CrossRefGoogle Scholar
Bos, W.J.T., Shao, L. & Bertoglio, J.-P. 2007 Spectral imbalance and the normalized dissipation rate of turbulence. Phys. Fluids 19 (4), 045101.CrossRefGoogle Scholar
Chen, J.G., Cuvier, C., Foucaut, J.-M., Ostovan, Y. & Vassilicos, J.C. 2021 A turbulence dissipation inhomogeneity scaling in the wake of two side-by-side square prisms. J. Fluid Mech. 924, A4.CrossRefGoogle Scholar
Goto, S. & Vassilicos, J.C. 2015 Energy dissipation and flux laws for unsteady turbulence. Phys. Lett. A 379 (16–17), 11441148.CrossRefGoogle Scholar
Goto, S. & Vassilicos, J.C. 2016 a Local equilibrium hypothesis and Taylor's dissipation law. Fluid Dyn. Res. 48 (2), 021402.CrossRefGoogle Scholar
Goto, S. & Vassilicos, J.C. 2016 b Unsteady turbulence cascades. Phys. Rev. E 94 (5), 053108.CrossRefGoogle ScholarPubMed
He, X., Wang, Y. & Tong, P. 2018 Dynamic heterogeneity and conditional statistics of non-Gaussian temperature fluctuations in turbulent thermal convection. Phys. Rev. Fluids 3 (5), 052401.CrossRefGoogle Scholar
Hearst, R.J. & Lavoie, P. 2014 Decay of turbulence generated by a square-fractal-element grid. J. Fluid Mech. 741, 567584.CrossRefGoogle Scholar
Hearst, R.J. & Lavoie, P. 2015 Velocity derivative skewness in fractal-generated, non-equilibrium grid turbulence. Phys. Fluids 27 (7), 071701.CrossRefGoogle Scholar
Horiuti, K. & Tamaki, T. 2013 Nonequilibrium energy spectrum in the subgrid-scale one-equation model in large-eddy simulation. Phys. Fluids 25 (12), 125104.CrossRefGoogle Scholar
Isaza, J.C., Salazar, R. & Warhaft, Z. 2014 On grid-generated turbulence in the near-and far field regions. J. Fluid Mech. 753, 402426.CrossRefGoogle Scholar
Kitamura, T., Nagata, K., Sakai, Y., Sasoh, A., Terashima, O., Saito, H. & Harasaki, T. 2014 On invariants in grid turbulence at moderate Reynolds numbers. J. Fluid Mech. 738, 378406.CrossRefGoogle Scholar
Kolmogorov, A.N. 1941 On degeneration (decay) of isotropic turbulence in an incompressible viscous liquid. Dokl. Akad. Nauk SSSR 31, 538540.Google Scholar
Lohse, D. 1994 Crossover from high to low Reynolds number turbulence. Phys. Rev. Lett. 73 (24), 32233226.CrossRefGoogle ScholarPubMed
Lumley, J.L. 1992 Some comments on turbulence. Phys. Fluids A 4 (2), 203211.CrossRefGoogle Scholar
Makita, H. 1991 Realization of a large-scale turbulence field in a small wind tunnel. Fluid Dyn. Res. 8 (1–4), 5364.Google Scholar
Meldi, M. & Sagaut, P. 2018 Investigation of anomalous very fast decay regimes in homogeneous isotropic turbulence. J. Turbul. 19 (5), 390413.CrossRefGoogle Scholar
Melina, G., Bruce, P.J.K. & Vassilicos, J.C. 2016 Vortex shedding effects in grid-generated turbulence. Phys. Rev. Fluids 1 (4), 044402.CrossRefGoogle Scholar
Nagata, K., Saiki, T., Sakai, Y., Ito, Y. & Iwano, K. 2017 Effects of grid geometry on non-equilibrium dissipation in grid turbulence. Phys. Fluids 29 (1), 015102.CrossRefGoogle Scholar
Pope, S.B. 2001 Turbulent Flows. Institute of Physics Publishing.Google Scholar
Seoud, R.E. & Vassilicos, J.C. 2007 Dissipation and decay of fractal-generated turbulence. Phys. Fluids 19 (10), 105108.CrossRefGoogle Scholar
Taylor, G.I. 1935 Statistical theory of turbulence. Proc. R. Soc. Lond. A 151 (873), 421444.CrossRefGoogle Scholar
Valente, P.C., Onishi, R. & da Silva, C.B. 2014 Origin of the imbalance between energy cascade and dissipation in turbulence. Phys. Rev. E 90 (2), 023003.CrossRefGoogle ScholarPubMed
Valente, P.C. & Vassilicos, J.C. 2011 The decay of turbulence generated by a class of multiscale grids. J. Fluid Mech. 687, 300340.CrossRefGoogle Scholar
Valente, P.C. & Vassilicos, J.C. 2012 Universal dissipation scaling for nonequilibrium turbulence. Phys. Rev. Lett. 108 (21), 214503.CrossRefGoogle ScholarPubMed
Vassilicos, J.C. 2015 Dissipation in turbulent flows. Annu. Rev. Fluid Mech. 47, 95114.CrossRefGoogle Scholar
Wacławczyk, M., Nowak, J.L., Siebert, H. & Malinowski, S.P. 2022 Detecting non-equilibrium states in atmospheric turbulence. J. Atmos. Sci. 79, 2757–2772.CrossRefGoogle Scholar
Watanabe, T. & Nagata, K. 2018 Integral invariants and decay of temporally developing grid turbulence. Phys. Fluids 30 (10), 105111.CrossRefGoogle Scholar
Watanabe, T., Zheng, Y. & Nagata, K. 2022 The decay of stably stratified grid turbulence in a viscosity-affected stratified flow regime. J. Fluid Mech. 946, A29.CrossRefGoogle Scholar
Yoshizawa, A. 1994 Nonequilibrium effect of the turbulent-energy-production process on the inertial-range energy spectrum. Phys. Rev. E 49 (5), 40654071.CrossRefGoogle ScholarPubMed
Zheng, Y., Nagata, K. & Watanabe, T. 2021 a Energy dissipation and enstrophy production/destruction at very low Reynolds numbers in the final stage of the transition period of decay in grid turbulence. Phys. Fluids 33 (3), 035147.CrossRefGoogle Scholar
Zheng, Y., Nagata, K. & Watanabe, T. 2021 b Turbulent characteristics and energy transfer in the far field of active-grid turbulence. Phys. Fluids 33 (11), 115119.CrossRefGoogle Scholar