Skip to main content Accessibility help
×
Home

Unstable Richtmyer–Meshkov growth of solid and liquid metals in vacuum

Published online by Cambridge University Press:  13 June 2012

W. T. Buttler
Affiliation:
Los Alamos National Laboratory, Physics, Los Alamos, NM 87544, USA
D. M. Oró
Affiliation:
Los Alamos National Laboratory, Physics, Los Alamos, NM 87544, USA
D. L. Preston
Affiliation:
Los Alamos National Laboratory, X-Computational Physics, Los Alamos, NM 87544, USA
K. O. Mikaelian
Affiliation:
Lawrence Livermore National Laboratory, B-Division, Livermore, CA 94550, USA
F. J. Cherne
Affiliation:
Los Alamos National Laboratory, Shock & Detonation Physics, Los Alamos, NM 87544, USA
R. S. Hixson
Affiliation:
Los Alamos National Laboratory, Physics, Los Alamos, NM 87544, USA
F. G. Mariam
Affiliation:
Los Alamos National Laboratory, Physics, Los Alamos, NM 87544, USA
C. Morris
Affiliation:
Los Alamos National Laboratory, Physics, Los Alamos, NM 87544, USA
J. B. Stone
Affiliation:
Los Alamos National Laboratory, Physics, Los Alamos, NM 87544, USA
G. Terrones
Affiliation:
Los Alamos National Laboratory, X-Theoretical Design, Los Alamos, NM 87544, USA
D. Tupa
Affiliation:
Los Alamos National Laboratory, Physics, Los Alamos, NM 87544, USA
Corresponding
E-mail address:

Abstract

We present experimental results supporting physics-based ejecta model development, where our main assumption is that ejecta form as a special limiting case of a Richtmyer–Meshkov (RM) instability at a metal–vacuum interface. From this assumption, we test established theory of unstable spike and bubble growth rates, rates that link to the wavelength and amplitudes of surface perturbations. We evaluate the rate theory through novel application of modern laser Doppler velocimetry (LDV) techniques, where we coincidentally measure bubble and spike velocities from explosively shocked solid and liquid metals with a single LDV probe. We also explore the relationship of ejecta formation from a solid material to the plastic flow stress it experiences at high-strain rates () and high strains (700 %) as the fundamental link to the onset of ejecta formation. Our experimental observations allow us to approximate the strength of Cu at high strains and strain rates, revealing a unique diagnostic method for use at these extreme conditions.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Bourne, N. K. & Gray, G. T. III 2005a Computational design of recovery experiments for ductile materials. Proc. R. Soc. A 461, 32973313.CrossRefGoogle Scholar
2. Bourne, N. K. & Gray, G. T. III. 2005b Soft-recovery of shocked polymers and composites. J. Phys. D 38, 36903694.CrossRefGoogle Scholar
3. Buttler, W. T. 2008 Comment on ‘Accuracy limits and window corrections for photon Doppler velocimetry’ (J. Appl. Phys. 101, 013523 (2007)). J. Appl. Phys. 103, 046102.CrossRefGoogle Scholar
4. Buttler, W. T., Lamoreaux, S. K., Omenetto, F. G. & Torgerson, J. R. 2004 Optical velocimetry. arXiv:physics/0409073v1.Google Scholar
5. Buttler, W. T., Routley, N., Hixson, R. S., King, N. S. P., Olson, R. T., Rigg, P. A., Rimmer, A. & Zellner, M. B. 2007a Method to separate and determine the amount of ejecta produced in a second material-fragmentation event. Appl. Phys. Lett. 90, 151921.CrossRefGoogle Scholar
6. Buttler, W. T. & Zellner, M. B. 2007 Tin ejecta data review: toward a statistical material fragmentation model, Milestone 2478. Tech. Rep. LA-UR-07-6522, Los Alamos National Laboratory.Google Scholar
7. Buttler, W. T., Zellner, M. B., Olson, R. T., Rigg, P. A., Hixson, R. S., Hammerberg, J. E., Obst, A. W., Payton, J. R., Iverson, A. & Young, J. 2007b Dynamic comparisons of piezoelectric ejecta diagnostics. J. Appl. Phys. 101, 063547.CrossRefGoogle Scholar
8. Buttler, W. T. & Zellner, M. B. Unpublished results gathered between 2005 and 2011.Google Scholar
9. Dimonte, G. & Ramaprabhu, R. 2010 Simulations and model of the nonlinear Richtmyer–Meshkov instability. Phys. Fluids 22, 014104.CrossRefGoogle Scholar
10. Douence, V. M., Bai, Y., Durmus, H., Joshi, A. B., Pettersson, P.-O., Sahoo, D., Kwiatkowski, K., King, N. S., Morris, C. & Wilke, M. D. 2005 Hybrid image sensor with multiple on-chip frame storage for ultrahigh-speed imaging. Proc. SPIE 5580, 226234.CrossRefGoogle Scholar
11. Forman, J. W. Jr., George, E. W. & Lewis, R. D. 1965a Feasibility study of a laser flowmeter for local velocity measurements in gas flow fields. Tech. Note #149, Teledyne Brown Engineering Co. Inc., Huntsville, AL.Google Scholar
12. Forman, J. W. Jr., George, E. W. & Lewis, R. D. 1965b Measurement of localized fluid flow velocities in gasses with a laser Doppler flowmeter. Appl. Phys. Lett. 7, 7778.CrossRefGoogle Scholar
13. Greeff, C., Chisolm, E. & George, D. 2005 SESAME 2161: An explicit multiphase equation of state for tin. Tech. Rep. LA-UR-05-9414, Los Alamos National Laboratory.Google Scholar
14. King, N. S. P., Ables, E., Adams, K., Alrick, K. R., Amann, J. F., Balzar, S., Barnes, P. D. Jr., Crow, M. L., Cushing, S. B., Eddleman, J. C., Fife, T. T., Flores, P., Fujino, D., Gallegos, R. A., Gray, N. T., Hartouni, E. P., Hogan, G. E., Holmes, V. H., Jaramillo, S. A., Knudsson, J. N., London, R. K., Lopez, R. R., McDonald, T. E., McClelland, J. B., Merrill, F. E., Morley, K. B., Morris, C. L., Naivar, F. J., Parker, E. L., Park, H. S., Pazuchanics, P. D., Pillai, C., Riedel, C. M., Sarracino, J. S., Shelley, F. E. Jr., Stacy, H. L., Takala, B. E., Thompson, R., Tucker, H. E., Yates, G. J., Ziock, H.-J. & Zumbro, J. D. 1999 An 800-MeV proton radiography facility for dynamic experiments. Nucl. Instrum. Meth. A 424, 8491.CrossRefGoogle Scholar
15. Mabire, C. & Hereil, P. L. 2000a Shock induced polymorphic transition and melting of tin. In Proceedings of the American Physical Society Topical Group on Shock Compression of Condensed Matter, Snowbird, Ut, 27 June–2 July 1999, vol. 505, pp. 93-96.Google Scholar
16. Mabire, C. & Hereil, P. L. 2000b Shock induced polymorphic transition and melting of tin up to 53 GPa (experimental study and modelling). J. Physique IV 10, 749754.Google Scholar
17. Merrill, F. E., Campos, E., Espinoza, C., Hogan, G., Hollander, B., Lopez, J., Mariam, F. G., Morley, D., Morris, C. L., Murray, M., Saunders, A., Schwartz, C. & Thompson, T. N. 2011 Magnifying lens for 800 MeV proton radiography. Rev. Sci. Instrum. 82, 103709.CrossRefGoogle ScholarPubMed
18. Meshkov, E. E. 1969 Instability in shock-accelerated boundary separating two gasses. Izv. Akad. Nauk SSSR Mekh. Zhidk. Gaza 5, 151158.Google Scholar
19. Meyer, K. A. & Blewett, P. J. 1972 Numerical investigation of the stability of a shock-accelerated interface between two fluids. Phys. Fluids 15, 753759.CrossRefGoogle Scholar
20. Mikaelian, K. O. 1998 Analytical approach to nonlinear Rayleigh–Taylor and Richtmyer–Meshkov instabilities. Phys. Rev. Lett. 80, 508511.CrossRefGoogle Scholar
21. Mikaelian, K. O. 2010 Analytical approach to nonlinear hydrodynamic instabilities driven by time-dependent accelerations. Phys. Rev. E 81, 016325.CrossRefGoogle Scholar
22. Morris, C., Hopson, J. W. & Goldstone, P. 2006 Proton radiography. Los Alamos Science 30, 3245. http://la-science.lanl.gov/lascience30.shtml.Google Scholar
23. Peterson, J. H., Honnell, K. G., Greeff, C., Johnson, J. D., Boettger, J. C. & Crockett, S. D. 2012 Global equation of state for copper. In Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter, Chigago, IL, USA, 26 June–1 July 2011, vol. 1426, pp. 763–766.Google Scholar
24. Piriz, A. R., Lopez-Cela, J. J., Tahir, N. A. & Hoffmann, D. H. H. 2008 Richtmyer–Meshkov instability in elastic–plastic media. Phys. Rev. E 78, 056401.CrossRefGoogle ScholarPubMed
25. Piriz, A. R., Lopez-Cela, J. J. & Tahir, N. A. 2009 Richtmyer–Meshkov instability as a tool for evaluating material strength under extreme conditions. Nucl. Instrum. Meth. Phys. Res. A 606, 139141.CrossRefGoogle Scholar
26. Preston, D. L., Tonks, D. L. & Wallace, D. C. 2003 Model of plastic deformations for extreme loading conditions. J. Appl. Phys. 93, 211220.CrossRefGoogle Scholar
27. Richtmyer, R. D. 1960 Taylor instability in shock acceleration of compressible fluids. Commun. Pure Appl. Math. 13, 297319.CrossRefGoogle Scholar
28. Strand, O. T., Goosman, D. R., Martinez, C. & Whitworth, T. L. 2006 Compact system for high-speed velocimetry using heterodyne techniques. Rev. Sci. Instrum. 77, 083108.CrossRefGoogle Scholar
29. Velikovich, A. L. & Dimonte, G. 1996 Nonlinear perturbation theory of the incompressible Richtmyer–Meshkov instability. Phys. Rev. Lett. 76, 31123115.CrossRefGoogle ScholarPubMed
30. Vogan, W. S., Anderson, W. W., Grover, M., Hammerberg, J. E., King, N. S. P., Lamoreaux, S. K., Macrum, G., Morley, K. B., Rigg, P. A., Stevens, G. D., Turley, W. D., Veeser, L. R. & Buttler, W. T. 2005 Piezoelectric characterization of ejecta from shocked tin surfaces. J. Appl. Phys. 98, 113508.CrossRefGoogle Scholar
31. Yeh, Y. & Cummins, H. Z. 1964 Localized fluid flow measurements with an He–Ne laser. App. Phys. Lett. 4, 176178.CrossRefGoogle Scholar
32. Zellner, M. B. & Buttler, W. T. 2008 Exploring Richtmyer–Meshkov instability phenomena and ejecta cloud physics. Appl. Phys. Lett. 93, 114102.CrossRefGoogle Scholar
33. Zellner, M. B., Grover, M., Hammerberg, J. E., Hixson, R. S., Iverson, A. J., Macrum, G. S., Morley, K. B., Obst, A. W., Olson, R. T., Payton, J. R., Rigg, P. A., Routley, N., Stevens, G. D., Turley, W. D., Veeser, L. & Buttler, W. T. 2007 Effects of shock breakout pressure on ejection of material from shocked tin surfaces. J. Appl. Phys. 102, 013522. Erratum: Effects of shock-breakout pressure on ejection of material from shocked tin surfaces. J. Appl. Phys. (2008) 103, 109901.CrossRefGoogle Scholar
34. Zellner, M. B., Vogan-McNeil, W., Gray, G. T. III, Huerta, D. C., King, N. S. P., Neal, G. E., Valentine, S. J., Payton, J. R., Rubin, J., Stevens, G. D., Turley, W. D. & Buttler, W. T. 2008a Surface preparation methods to enhance dynamic surface property measurements of shocked metal surfaces. J. Appl. Phys. 103, 083521.CrossRefGoogle Scholar
35. Zellner, M. B., Vogan-McNeil, W., Hammerberg, J. E., Hixson, R. S., Obst, A. W., Olson, R. T., Payton, J. R., Rigg, P. A., Routley, N., Stevens, G. D., Turley, W. D., Veeser, L. & Buttler, W. T. 2008b Probing the underlying physics of ejecta production from shocked Sn samples. J. Appl. Phys. 103, 123502.CrossRefGoogle Scholar
36. Zhang, Q. 1998 Analytical solution of Layzer-type approach to unstable interfacial fluid mixing. Phys. Rev. Lett. 81, 33913394.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 380 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 24th January 2021. This data will be updated every 24 hours.

Hostname: page-component-76cb886bbf-2rmft Total loading time: 0.633 Render date: 2021-01-24T03:19:38.364Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Unstable Richtmyer–Meshkov growth of solid and liquid metals in vacuum
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Unstable Richtmyer–Meshkov growth of solid and liquid metals in vacuum
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Unstable Richtmyer–Meshkov growth of solid and liquid metals in vacuum
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *