Skip to main content Accessibility help
×
Home
Hostname: page-component-54cdcc668b-hs2vm Total loading time: 0.343 Render date: 2021-03-08T23:08:33.238Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Span effect on the turbulence nature of flow past a circular cylinder

Published online by Cambridge University Press:  06 September 2019

Bernat Font Garcia
Affiliation:
Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, UK Institute of High Performance Computing, Singapore Agency for Science, Technology and Research (A*STAR), 138632, Singapore
Gabriel D. Weymouth
Affiliation:
Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, UK
Vinh-Tan Nguyen
Affiliation:
Institute of High Performance Computing, Singapore Agency for Science, Technology and Research (A*STAR), 138632, Singapore
Owen R. Tutty
Affiliation:
Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, UK
Corresponding
E-mail address:

Abstract

Turbulent flow evolution and energy cascades are significantly different in two-dimensional (2-D) and three-dimensional (3-D) flows. Studies have investigated these differences in obstacle-free turbulent flows, but solid boundaries have an important impact on the cross-over from 3-D to 2-D turbulence dynamics. In this work, we investigate the span effect on the turbulence nature of flow past a circular cylinder at $Re=10\,000$. It is found that even for highly anisotropic geometries, 3-D small-scale structures detach from the walls. Additionally, the natural large-scale rotation of the Kármán vortices rapidly two-dimensionalise those structures if the span is 50 % of the diameter or less. We show this is linked to the span being shorter than the Mode B instability wavelength. The conflicting 3-D small-scale structures and 2-D Kármán vortices result in 2-D and 3-D turbulence dynamics which can coexist at certain locations of the wake depending on the domain geometric anisotropy.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below.

References

Adams, N. A. & Hickel, S. 2009 Implicit large-eddy simulation: theory and application. In Advances in Turbulence XII, pp. 743750. Springer.CrossRefGoogle Scholar
Bao, Y., Palacios, R., Graham, J. M. R. & Sherwin, S. 2016 Generalized thick strip modelling for vortex-induced vibration of long flexible cylinders. J. Comput. Phys. 321, 10791097.CrossRefGoogle Scholar
Bao, Y., Zhu, H. B., Huan, P., Wang, R., Zhou, D., Han, Z. L., Palacios, R., Graham, M. & Sherwin, S. 2019 Numerical prediction of vortex-induced vibration of flexible riser with thick strip method. J. Fluids Struct. (in press).CrossRefGoogle Scholar
Batchelor, G. K. 1969 Computation of the energy spectrum in homogeneous two-dimensional turbulence. Phys. Fluids 12 (12), II–233–II–239.CrossRefGoogle Scholar
Biancofiore, L. 2014 Crossover between two- and three-dimensional turbulence in spatial mixing layers. J. Fluid Mech. 745, 164179.CrossRefGoogle Scholar
Biancofiore, L., Gallaire, F. & Pasquetti, R. 2012 Influence of confinement on obstacle-free turbulent wakes. Comput. Fluids 58, 2744.CrossRefGoogle Scholar
Bloor, M. S. 1964 The transition to turbulence in the wake of a circular cylinder. J. Fluid Mech. 19 (2), 290304.CrossRefGoogle Scholar
Boffetta, G. & Ecke, R. E. 2012 Two-dimensional turbulence. Annu. Rev. Fluid Mech. 44, 427451.CrossRefGoogle Scholar
Celani, A., Musacchio, S. & Vincenzi, D. 2010 Turbulence in more than two and less than three dimensions. Phys. Rev. Lett. 104 (18), 184506.CrossRefGoogle ScholarPubMed
Choi, K.-S. & Lumley, J. L. 2001 The return to isotropy of homogeneous turbulence. J. Fluid Mech. 436, 5984.CrossRefGoogle Scholar
Chyu, C. & Rockwell, D. 1996 Evolution of patterns of streamwise vorticity in the turbulent near wake of a circular cylinder. J. Fluid Mech. 320, 117137.CrossRefGoogle Scholar
Dong, S. & Karniadakis, G. E. 2005 DNS of flow past a stationary and oscillating cylinder at Re = 10 000. J. Fluids Struct. 20, 519531.CrossRefGoogle Scholar
Dritschel, D. G., Scott, R. K., Macaskill, C., Gottwald, G. A. & Tran, C. V. 2008 Unifying scaling theory for vortex dynamics in two-dimensional turbulence. Phys. Rev. Lett. 101, 094501.CrossRefGoogle ScholarPubMed
Gilbert, A. D. 1988 Spiral structures and spectra in two-dimensional turbulence. J. Fluid Mech. 193, 475497.CrossRefGoogle Scholar
Hendrickson, K., Weymouth, G. D., Yue, D. K.-P. & Yue Yu, X. 2019 Wake behind a three-dimensional dry transom stern. Part 1: flow structure and large-scale air entrainment. J. Fluid Mech. 875, 854883.CrossRefGoogle Scholar
Kourta, A., Boisson, H. C., Chassaing, P. & Ha Minh, H. 1987 Nonlinear interaction and the transition to turbulence in the wake of a circular cylinder. J. Fluid Mech. 181, 141161.CrossRefGoogle Scholar
Kraichnan, R. H. 1967 Inertial ranges in two-dimensional turbulence. Phys. Fluids 10, 14171423.CrossRefGoogle Scholar
Leith, C. E. 1968 Diffusion approximation for two-dimensional turbulence. Phys. Fluids 11, 671673.CrossRefGoogle Scholar
Lumley, J. L. 1978 Computational modeling of turbulent flows. Adv. Appl. Mech. 18, 123176.CrossRefGoogle Scholar
Lumley, J. L. & Newman, G. R. 1977 The return to isotropy of homogeneous turbulence. J. Fluid Mech. 82, 161178.CrossRefGoogle Scholar
Maertens, A. P. & Weymouth, G. D. 2015 Accurate Cartesian-grid simulations of near-body flows at intermediate Reynolds numbers. Comput. Meth. Appl. Mech. Engng 283, 106129.CrossRefGoogle Scholar
Mittal, R. & Balachandar, S. 1995 Effect of three-dimensionality on the lift and drag of nominally two-dimensional cylinders. Phys. Fluids 7 (8), 18411865.CrossRefGoogle Scholar
Noack, B. R. 1999 On the flow around a circular cylinder. Part I: laminar and transitional regime. Z. Angew. Math. Mech. J. Appl. Math. Mech. 79, 223226.CrossRefGoogle Scholar
Norberg, C. 2003 Fluctuating lift on a circular cylinder: review and new measurements. J. Fluids Struct. 17, 5796.CrossRefGoogle Scholar
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Roshko, A.1954 On the development of turbulent wakes from vortex streets. NACA Rep. 1191. National Advisory Committee for Aeronautics, Washington D.C.Google Scholar
Schulmeister, J. C., Dahl, J. M., Weymouth, G. D. & Triantafyllou, M. S. 2017 Flow control with rotating cylinders. J. Fluid Mech. 825, 743763.CrossRefGoogle Scholar
Smith, L. M., Chasnov, J. R. & Waleffe, F. 1996 Crossover from two- to three-dimensional turbulence. Phys. Rev. Lett. 77 (12), 24672470.CrossRefGoogle ScholarPubMed
Weymouth, G. D. & Yue, D. K. P. 2011 Boundary data immersion method for Cartesian-grid simulations of fluid-body interaction problems. J. Comput. Phys. 230, 62336247.CrossRefGoogle Scholar
Williamson, C. H. K. 1996a Three-dimensional wake transition. J. Fluid Mech. 328, 345407.CrossRefGoogle Scholar
Williamson, C. H. K. 1996b Vortex dynamics in the cylinder wake. Annu. Rev. Fluid Mech. 28, 477539.CrossRefGoogle Scholar
Xia, H., Byrne, D., Falkovich, G. & Shats, M. 2011 Upscale energy transfer in thick turbulent fluid layers. Nat. Phys. 7, 321324.CrossRefGoogle Scholar
Xiao, Z., Wan, M., Chen, S. & Eyink, G. L. 2009 Physical mechanism of the inverse energy cascade of two-dimensional turbulence: a numerical investigation. J. Fluid Mech. 619, 144.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 37
Total number of PDF views: 502 *
View data table for this chart

* Views captured on Cambridge Core between 06th September 2019 - 8th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Span effect on the turbulence nature of flow past a circular cylinder
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Span effect on the turbulence nature of flow past a circular cylinder
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Span effect on the turbulence nature of flow past a circular cylinder
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *