Skip to main content Accessibility help
×
Home

A new kind of solitary wave

Published online by Cambridge University Press:  26 April 2006

T. Brooke Benjamin
Affiliation:
Mathematical Institute, 24-29 St Giles, Oxford OX1 3LB. UK

Abstract

The investigation focuses on solitary-wave solutions of an approximate pseudo-differential equation governing the unidirectional propagation of long waves in a two-fluid system where the lower fluid with greater density is infinitely deep and the interface is subject to capillarity. The validity of this model equation is shown to depend on the assumption that T/g21)h2 [Gt ] 1, where T is the interfacial surface tension, ρ2 − ρ1 the difference between the densities of the fluids and h the undisturbed thickness of the upper layer.

Various properties of solitary waves are demonstrated. For example, they have oscillatory outskirts and their velocities of translation are less than the minimum velocity of infinitesimal waves. Also, they realise respective minima of an invariant functional for fixed values of another such functional, being in consequence orbitally stable. Explicit non-trivial solutions of the equation in question are unavailable, but an existence theory is presented covering both periodic and solitary waves of permanent form.

Type
Research Article
Copyright
© 1992 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below.

References

Benjamin T. B. 1967 Internal waves of permanent form in fluids of great depth. J. Fluid Mech. 29, 559592.Google Scholar
Benjamin T. B. 1972 The stability of solitary waves Proc. R. Soc. Lond. A 328, 153183.Google Scholar
Benjamin T. B. 1974 Lectures on nonlinear wave motion. Am. Math. Soc., Lectures in Appl. Maths 15, 347.Google Scholar
Benjamin T. B. 1982 The solitary wave with surface tension. Q. Appl. Maths 40, 231234.Google Scholar
Benjamin T. B. 1993a Note on formulas for the drag of a sphere. J. Fluid Mech. 246, 335342.Google Scholar
Benjamin T. B. 1993b Nonlinear Dispersive Waves. Philadelphia: SIAM.
Benjamin T. B., Bona, J. L. & Bose D. K. 1990 Solitary-wave solutions of nonlinear problems Phil. Trans. R. Soc. Lond. A 331, 195244.Google Scholar
Bona J. L. 1975 On the stability of solitary waves Proc. R. Soc. Lond. A 344, 363374.Google Scholar
Iooss, G. & Kirchgässner K. 1990 Bifurcations d'ondes solitaires en presence d'une faible tension superficielle. C.R. Acad. Sci. Paris 311 (Sér. 1), 265268.Google Scholar
Kaye, G. W. C. & Laby T. H. 1966 Tables of Physical and Chemical Constants, 13th edn. Longmans.
Korteweg, D. J. & Vries G. de 1895 On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves Phil. Mag (5) 39, 422443.Google Scholar
Lamb H. 1932 Hydrodynamics, 6th edn. Cambridge University Press. (Dover edition 1945.)
Longuet-Higgins M. S. 1989 Capillary-gravity waves of solitary type on deep water. J. Fluid Mech. 200, 451470.Google Scholar
Ono H. 1975 Algebraic solitary waves in stratified fluids. J. Phys. Soc. Japan 39, 10821091.Google Scholar
Vanden-Broeck, J.-M. & Dias F. 1992 Gravity-capillary solitary waves in water of infinite depth and related free-surface flows. J. Fluid Mech. 240, 549557.Google Scholar
Whitham G. B. 1974 Linear and Nonlinear Waves. Wiley-Interscience.

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 91 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 17th January 2021. This data will be updated every 24 hours.

Hostname: page-component-77fc7d77f9-xz9qf Total loading time: 0.227 Render date: 2021-01-17T17:04:54.252Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Sun Jan 17 2021 16:54:22 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": true, "languageSwitch": true, "figures": false, "newCiteModal": false, "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A new kind of solitary wave
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

A new kind of solitary wave
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

A new kind of solitary wave
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *