Skip to main content Accessibility help
×
Home
Hostname: page-component-78dcdb465f-tqmtl Total loading time: 1.78 Render date: 2021-04-16T09:19:31.476Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Low-dimensional dynamics of a turbulent wall flow

Published online by Cambridge University Press:  22 June 2001

JAVIER JIMÉNEZ
Affiliation:
School of Aeronautics, U. Politécnica, 28040 Madrid, Spain Centre for Turbulence Research, Stanford U., Stanford, CA 94305, USA
MARK P. SIMENS
Affiliation:
School of Aeronautics, U. Politécnica, 28040 Madrid, Spain

Abstract

The low-dimensional dynamics of the structures in a turbulent wall flow are studied by means of numerical simulations. These are made both ‘minimal’, in the sense that they contain a single copy of each relevant structure, and ‘autonomous’ in the sense that there is no outer turbulent flow with which they can interact. The interaction is prevented by a numerical mask that damps the flow above a given wall distance, and the flow behaviour is studied as a function of the mask height. The simplest case found is a streamwise wave that propagates without change. It takes the form of a single wavy low-velocity streak flanked by two counter-rotating staggered quasi-streamwise vortices, and is found when the height of the numerical masking function is less than δ+1 ≈ 50. As the mask height is increased, this solution bifurcates into an almost-perfect limit cycle, a two-frequency torus, weak chaos, and full-edged bursting turbulence. The transition is essentially complete when δ+1 ≈ 70, even if the wall-parallel dimensions of the computational box are small enough for bursting turbulence to be metastable, lasting only for a few bursting cycles. Similar low-dimensional dynamics are found in somewhat larger boxes, containing two copies of the basic structures, in which the bursting turbulence is self-sustaining.

Type
Research Article
Copyright
© 2001 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below.

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 103 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 16th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Low-dimensional dynamics of a turbulent wall flow
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Low-dimensional dynamics of a turbulent wall flow
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Low-dimensional dynamics of a turbulent wall flow
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *