Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-21T12:54:00.566Z Has data issue: false hasContentIssue false

The influence of inlet velocity profile and secondary flow on pulsatile flow in a model artery with stenosis

Published online by Cambridge University Press:  10 December 2008

Department of Mechanical Engineering, Purdue University, West Lafayette, IN 47907,
Department of Mechanical Engineering, Purdue University, West Lafayette, IN 47907,


The results of an experimental investigation to determine the influence of two physiologically relevant inlet conditions on the flow physics downstream of an idealized stenosis are presented. The two inlet conditions are an asymmetric mean inlet velocity profile and an asymmetric mean inlet velocity profile plus secondary flow, as found downstream of a bend. The stenosis is modelled as an axisymmetric 75% area reduction occlusion with a length-to-diameter ratio of 2. The flow was forced by a 10-harmonic carotid artery-inspired waveform with mean, maximum and minimum Reynolds numbers of 364, 1424 and 24, respectively, and a Womersley number of 4.6. Laser Doppler velocimetry and particle image velocimetry were used to characterize the spatial and temporal evolution of a baseline case (no disturbances) as well as the two physiologically relevant inlet conditions. The asymmetric inlet velocity profile was found to reduce the region of influence of the stenosis by forcing the stenotic jet towards the tube wall via an induced non-uniform radial pressure gradient, similar to the Coanda effect. Curvature-induced secondary flow was found to play a minor role in the near-stenosis region. Vortex ring formation was relatively unaffected by the mean velocity gradient and secondary flow. Evidence of remnants of the starting vortex ring was observed far downstream in all cases.

Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Adrian, R. J. 1996 Laser velocimetry. In Fluid Mechanics Measurements, 2nd edn. (ed. Goldstein, R. J.), pp. 175299. Washington, DC: Taylor & Francis.Google Scholar
Ahmed, S. A. & Giddens, D. P. 1983 Velocity measurements in steady flow through axisymmetric stenoses at moderate Reynolds numbers. J. Biomech. 16, 505516.CrossRefGoogle ScholarPubMed
Ahmed, S. A. & Giddens, D. P. 1984 Pulsatile poststenotic flow studies with laser doppler velocimetry. J. Biomech. 17 (9), 695705.CrossRefGoogle Scholar
Beratlis, N., Balaras, E., Parvinian, B. & Kiger, K. 2005 A numerical and experimental investigation of transitional pulsatile flow in a stenosed channel. J. Biomech. Engng 127, 11471157.CrossRefGoogle Scholar
Berger, S. A. & Jou, L.-D. 2000 Flows in stenotic vessels. Annu. Rev. Fluid Mech. 32, 347382.CrossRefGoogle Scholar
Berger, S. A., Talbot, L. & Yao, L.-S. 1983 Flow in curved pipes. Annu. Rev. Fluid Mech. 15, 461512.CrossRefGoogle Scholar
Bharadvaj, B. K., Mabon, R. F. & Giddens, D. P. 1982 Steady flow in a model of the human carotid bifurcation. Part I – flow visualization. J. Biomech. 15 (5), 349362.CrossRefGoogle Scholar
Blackburn, H. M. & Sherwin, S. J. 2007 Instability modes and transition of pulsatile stenotic flow: pulse-period dependence. J. Fluid Mech. 573, 5788.CrossRefGoogle Scholar
Bortolotto, L. A., Hanon, O., Franconi, G., Boutouyrie, P., Legrain, S. & Girerd, X. 1999 The aging process modifies the distensibility of elastic but not muscular arteries. Hypertension 34, 889892.CrossRefGoogle Scholar
Brasseur, J. G. 1979 Kinematics and dynamics of vortex rings in a tube. PhD dissertation, Department of Aeronautics and Astronautics, Stanford University, Stanford, CA.Google Scholar
Cao, J. & Rittgers, S. E. 1998 Particle motion within in Vitro models of stenosed internal carotid and left anterior descending coronary arteries. Ann. Biomed. Engng 26, 190199.CrossRefGoogle ScholarPubMed
Chandran, K. B. 1993 Flow dynamics in the human aorta. J. Biomech. Engng 115, 611616.CrossRefGoogle ScholarPubMed
Chandran, K. B., Swanson, W. M., Ghista, D. N. & Vayo, H. W. 1974 Oscillatory flow in thin-walled curved elastic tubes. Ann. Biomed. Engng 2, 392412.CrossRefGoogle ScholarPubMed
Dean, W. R. 1928 Fluid motion in a curved channel. Proc. R. Soc. Lond. A 121, 402420.Google Scholar
Deplano, V. & Siouffi, M. 1999 Experimental and numerical study of pulsatile flows through stenosis: Wall shear stress analysis. J. Biomech. 32, 10811090.CrossRefGoogle ScholarPubMed
Dewey, C. F., Bussolari, S. R., Gimbrone, M. A. & Davies, P. F. 1981 The dynamic response of vascular endothelial cells to fluid shear stress. J. Biomech. Engng 103, 177181.CrossRefGoogle ScholarPubMed
Dwyer, H. A., Cheer, A. Y., Rutaganira, T. & Shacheraghi, N. 2001 Calculation of unsteady flows in curved pipes. J. Fluid Engng 123, 869877.CrossRefGoogle Scholar
Elad, D. & Einav, S. 2003 Physical and flow properties of blood. In Standard Handbook of Biomedical Engineering and Design (ed. Kutz, M.), pp. 3.13.25. New York, NY: McGraw-Hill.Google Scholar
Frangos, J. A., McIntire, L. V. & Eskin, S. G. 1988 Shear stress induced stimulation of mammalian cell metabolism. Biotechnol. Bioengng 32, 10531060.CrossRefGoogle ScholarPubMed
Holdsworth, D. W., Norley, C. J. D., Frayne, R., Steinman, A. & Rutt, B. K. 1999 Characterization of common carotid artery blood-flow waveforms in normal human subjects. Physiol. Meas. 20, 219240.CrossRefGoogle ScholarPubMed
Hsiai, T. K., Cho, S. K., Honda, H. M., Hama, S., Navab, M., Demer, L. L. & Ho, C.-M. 2002 Endothelial cell dynamics under pulsating flows: significance of high versus low shear stress slew rates. Ann. Biomed. Engng 30 (5), 646656.CrossRefGoogle ScholarPubMed
Hsiai, T. K., Cho, S. K., Wong, P. K., Ing, M., Salazar, A., Sevanian, A., Navab, M., Demer, L. L. & Ho, C-M. 2003 Monocyte recruitment to endothelial cells in response to oscillatory shear stress. FASEB J. 17, 16481657.CrossRefGoogle ScholarPubMed
Hyun, S., Kleinstreuer, C. & Archie, J. P. Jr. 2000 Hemodynamics analysis of arterial expansions with implications to thrombosis and restenosis. Med. Engng Phys. 22, 1327.CrossRefGoogle Scholar
Kamm, R. D. 2002 Cellular fluid mechanics. Annu. Rev. Fluid Mech. 34, 211232.CrossRefGoogle ScholarPubMed
Khalifa, A. M. A. & Giddens, D. P. 1981 Characterization and evolution of poststenotic flow disturbances. J. Biomech. 14, 279296.CrossRefGoogle ScholarPubMed
Komai, Y. & Tanishita, K. 1997 Fully developed intermittent flow in a curved tube. J. Fluid Mech. 347, 263287.CrossRefGoogle Scholar
Konno, T., Satoh, Y. & Tanishita, K. 1999 Model experiment on physiologically intermittent flow in an aortic arch. JSME Intl J. 42 (3), 648655.CrossRefGoogle Scholar
Ku, D. N. 1997 Blood flow in arteries. Annu. Rev. Fluid Mech. 29, 399434.CrossRefGoogle Scholar
Lin, J. Y. & Tarbell, J. M. 1980 An experimental and numerical study of periodic flow in a curved tube. J. Fluid Mech. 100, 623638.CrossRefGoogle Scholar
Long, Q., Xu, X. Y., Ramnarine, K. V. & Hoskins, P. 2001 Numerical investigation of physiologically realistic pulsatile flow through arterial stenosis. J. Biomech. 34, 12291242.CrossRefGoogle ScholarPubMed
Lyne, W. H. 1970 Unsteady viscous flow in a curved pipe. J. Fluid Mech. 45, 1331.CrossRefGoogle Scholar
McCann, J. A., Peterson, S. D., Plesniak, M. W., Webster, T. J. & Haberstroh, K. M. 2005 Non-uniform flow behavior in a parallel plate flow chamber alters endothelial cell responses. Ann. Biomed. Engng 33 (3), 328336.CrossRefGoogle Scholar
McCann, J. M. 2005 An investigation of vascular cell responses to physiologically relevant mechanical and biochemical stimuli. Ph.D. dissertation, Department of Biomedical Engineering, Purdue University, West Lafayette, IN.Google Scholar
Mittal, R., Simmons, S. P. & Najjar, F. 2003 Numerical study of pulsatile flow in a constricted channel. J. Fluid Mech. 485, 337378.CrossRefGoogle Scholar
Mittal, R., Simmons, S. P. & Udaykumar, H. S. 2001 Application of large-eddy simulation to the study of pulsatile flow in a modeled arterial stenosis. J. Biomech. Engng 123, 325332.CrossRefGoogle Scholar
Naruse, T. & Tanishita, K. 1996 Large curvature effect on pulsatile entrance flow in a curved tube: Model experiment stimulating blood flow in an aortic arch. J. Biomech. Engng 118, 180186.CrossRefGoogle Scholar
Nerem, R. M. 1992 Vascular fluid mechanics, the arterial wall, and atherosclerosis. J. Biomech. Engng 114, 274282.CrossRefGoogle ScholarPubMed
Nerem, R. M., Levesque, M. J. & Cornhill, J. F. 1981 Vascular endothelial morphology as an indicator of blood flow. J. Biomech. Engng 103, 172176.CrossRefGoogle ScholarPubMed
Ojha, M., Cobbold, R. S. C., Johnston, K. W. & Hummel, R. L. 1989 Pulsatile flow through constricted tubes: An experimental investigation using photochromic tracer methods. J. Fluid Mech. 203, 173197.CrossRefGoogle Scholar
Peterson, S. D. & Plesniak, M. W. 2003 Turbulent characterists in a stenosed arterial model with relevance to atherosclerosis. In Proc. Turbulence and Shear Flow Phenomena Meeting. Sendai, Japan.Google Scholar
Raffel, M., Willert, C. & Kompenhans, J. 1998 Particle Image Velocimetry. Berlin: Springer.CrossRefGoogle Scholar
Sherwin, S. J. & Blackburn, H. M. 2005 Three-dimensional instabilities of steady and pulsatile axisymmetric stenotic flows. J. Fluid Mech. 533, 297327.CrossRefGoogle Scholar
Siouffi, M., Deplano, V. & Pelissier, R. 1998 Experimental analysis of unsteady flows through a stenosis. J. Biomech. 31, 1119.CrossRefGoogle ScholarPubMed
Snyder, B., Hammersley, J. R. & Olson, D. E. 1985 The axial skew of flow in curved pipes. J. Fluid Mech. 161, 281294.CrossRefGoogle Scholar
Stroud, J. S., Berger, S. A. & Saloner, D. 2000 Influence of stenosis morphology on flow through severely stenotic vessels: implications for plaque rupture. J. Biomech. 33, 443455.CrossRefGoogle ScholarPubMed
Stroud, J. S., Berger, S. A. & Saloner, D. 2002 Numerical analysis of flow through a severely stenotic carotid artery bifurcation. J. Biomech. Engng 124, 920.CrossRefGoogle ScholarPubMed
Swanson, C. J., Stalp, S. R. & Donnelly, R. 1993 Experimental investigation of periodic flow in curved pipes. J. Fluid Mech. 256, 6983.CrossRefGoogle Scholar
Talbot, L. & Gong, K. 1983 Pulsatile entrance flow in a curved pipe. J. Fluid Mech. 127, 125.CrossRefGoogle Scholar
Tarbell, J. M. & Phakis, M. Y. 2006 Mechanotransduction and the glycocalyx. J. Intl Med. 259, 339350.CrossRefGoogle ScholarPubMed
Tarbell, J. M., Weinbaum, S. & Kamm, R. D. 2005 Cellular fluid mechanics and mechano-transduction. Ann. Biomed. Engng 33 (12), 17191723.CrossRefGoogle Scholar
Thom, T., Haase, N., Rosamond, W., Howard, V. J. & Rumsfeld, J. 2006 Heart disease and stroke statistics: 2006 update. a report from the american heart association statistics committee and stroke statistics subcommittee. Circulation 113 (6), 85151.Google ScholarPubMed
Topper, J. N. & Gimbrone, M. A. Jr. 1999 Blood flow and vascular gene expression: Fluid shear stress as a modulator of endothelial cell phenotype. Mol. Med. Today 5, 4046.CrossRefGoogle Scholar
Varghese, S. S. 2006 Even small geometric perturbations impact stenotic flow development. PhD dissertation, Department of Mechanical Engineering, Purdue University, West Lafayette, IN.Google Scholar
Varghese, S. S., Frankel, S. H. & Fischer, P. F. 2007 a Direct numerical simulation of stenotic flows. Part 1. steady flow. J. Fluid Mech. 582, 253280.CrossRefGoogle Scholar
Varghese, S. S., Frankel, S. H. & Fischer, P. F. 2007 b Direct numerical simulation of stenotic flows. Part 2. Pulsatile flow. J. Fluid Mech. 582, 281318.CrossRefGoogle Scholar
Weiss, J. 1991 The dynamics of enstrophy transfer in two-dimensional hydrodynamics. Physica D 48, 273294.CrossRefGoogle Scholar
White, F. M. 2006 Viscous Fluid Flow, 3rd edn.New York, NY: McGraw-Hill.Google Scholar
Womersley, J. R. 1955 Method for the calculation of velocity, rate of flow and viscous drag in arteries when their pressure gradient is known. J. Physiol. 127, 553563.CrossRefGoogle ScholarPubMed