Hostname: page-component-84b7d79bbc-4hvwz Total loading time: 0 Render date: 2024-07-25T07:36:35.520Z Has data issue: false hasContentIssue false

A high-order asymptotic analysis of the Benjamin–Feir instability spectrum in arbitrary depth

Published online by Cambridge University Press:  08 February 2023

Ryan P. Creedon*
Affiliation:
Department of Applied Mathematics, University of Washington, Seattle, WA USA
Bernard Deconinck*
Affiliation:
Department of Applied Mathematics, University of Washington, Seattle, WA, USA
*
Email addresses for correspondence: creedon@uw.edu, deconinc@uw.edu
Email addresses for correspondence: creedon@uw.edu, deconinc@uw.edu

Abstract

We investigate the Benjamin–Feir (or modulational) instability of Stokes waves, i.e. small-amplitude, one-dimensional periodic gravity waves of permanent form and constant velocity, in water of finite and infinite depth. We develop a perturbation method to describe to high-order accuracy the unstable spectral elements associated with this instability, obtained by linearizing Euler's equations about the small-amplitude Stokes waves. These unstable elements form a figure-eight curve centred at the origin of the complex spectral plane, which is parametrized by a Floquet exponent. Our asymptotic expansions of this figure-eight are in excellent agreement with numerical computations as well as recent rigorous results by Berti et al. (Full description of Benjamin–Feir instability of Stokes waves in deep water, 2021, arXiv:2109.11852) and Berti et al. (Benjamin–Feir instability of Stokes waves in finite depth, 2022, arXiv:2204.00809). From our expansions, we derive high-order estimates for the growth rates of the Benjamin–Feir instability and for the parametrization of the Benjamin–Feir figure-eight curve with respect to the Floquet exponent. We are also able to compare the Benjamin–Feir and high-frequency instability spectra analytically for the first time, revealing three different regimes of the Stokes waves, depending on the predominant instability.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ablowitz, M.J., Fokas, A.S. & Musslimani, Z.H. 2006 On a new non-local formulation of water waves. J. Fluid Mech. 562, 313343.CrossRefGoogle Scholar
Ablowitz, M.J. & Haut, T.S. 2008 Spectral formulation of the two fluid Euler equations with a free interface and long wave reduction. Anal. Applics. 6 (4), 323348.CrossRefGoogle Scholar
Akers, B. 2015 Modulational instabilities of periodic traveling waves in deep water. Physica D 300, 2633.CrossRefGoogle Scholar
Benjamin, T.B. 1967 Instability of periodic wave trains in nonlinear dispersive systems. Proc. R. Soc. A 299, 5979.Google Scholar
Benjamin, T.B. & Feir, J. 1967 The disintegration of wave trains on deep water. Part I. Theory. J. Fluid Mech. 27, 417430.CrossRefGoogle Scholar
Berti, M., Maspero, A. & Ventura, P. 2021 Full description of Benjamin–Feir instability of Stokes waves in deep water. Invent. Math 230 (2), 651711.CrossRefGoogle Scholar
Berti, M., Maspero, A. & Ventura, P. 2022 Benjamin–Feir instability of Stokes waves in finite depth. arXiv:2204.00809.CrossRefGoogle Scholar
Bridges, T.H. & Mielke, A. 1995 A proof of the Benjamin–Feir instability. Arch. Ration. Mech. Anal. 133, 145198.CrossRefGoogle Scholar
Bryant, P.J. 1974 Stability of periodic waves in shallow water. J. Fluid Mech. 66, 8196.CrossRefGoogle Scholar
Bryant, P.J. 1978 Oblique instability of periodic waves in shallow water. J. Fluid Mech. 86, 783792.CrossRefGoogle Scholar
Craig, W. & Sulem, C. 1993 Numerical simulation of gravity waves. J. Comput. Phys. 108 (1), 7383.CrossRefGoogle Scholar
Craik, A.D.D. 2004 The origins of water wave theory. Annu. Rev. Fluid Mech. 36, 128.CrossRefGoogle Scholar
Creedon, R.P., Deconinck, B. & Trichtchenko, O. 2021 a High-frequency instabilities of a Boussinesq–Whitham system: a perturbative approach. Fluids 6 (4).CrossRefGoogle Scholar
Creedon, R.P., Deconinck, B. & Trichtchenko, O. 2021 b High-frequency instabilities of the Kawahara equation: a perturbative approach. SIAM J. Appl. Dyn. Syst. 20 (3), 15711595.CrossRefGoogle Scholar
Creedon, R.P., Deconinck, B. & Trichtchenko, O. 2022 High-frequency instabilities of Stokes waves. J. Fluid Mech. 937, A24.CrossRefGoogle Scholar
Deconinck, B. & Kutz, J.N. 2006 Computing spectra of linear operators using the Floquet–Fourier–Hill method. J. Comput. Phys. 219 (1), 296321.CrossRefGoogle Scholar
Deconinck, B. & Oliveras, K. 2011 The instability of periodic surface gravity waves. J. Fluid Mech. 675, 141167.CrossRefGoogle Scholar
Deconinck, B. & Trichtchenko, O. 2017 High-frequency instabilities of small-amplitude solutions of hamiltonian PDEs. J. Discrete Continuous Dyn. Syst. A 37 (3), 13231358.Google Scholar
Dyachenko, A.I., Zakharov, V.E. & Kuznetsov, E.A. 1996 Nonlinear dynamics of the free surface of an ideal fluid. Plasma Phys. Rep. 22 (10), 829840.Google Scholar
Grimshaw, R. 2005 Nonlinear Waves in Fluids: Recent Advances and Modern Applications. Springer.CrossRefGoogle Scholar
Haragus, M. & Kapitula, T. 2008 On the spectra of periodic waves for infinite-dimensional hamiltonian systems. Physica D 237, 26492671.Google Scholar
Hur, V.M. & Yang, Z. 2022 Unstable stokes waves. arXiv:2010.10766.Google Scholar
Huygens, C. 1905 Tome Dixième, In Oeuvres complètes de Christiaan Huygens. Martinus Nijhoff Publishers.Google Scholar
Kapitula, T. & Promislow, K. 2013 Spectral and Dynamical Stability of Nonlinear Waves. Springer.CrossRefGoogle Scholar
Kato, T. 1966 Perturbation Theory for Linear Operators. Springer.Google Scholar
Korotkevich, A.O., Dyachenko, A.I. & Zakharov, V.E. 2016 Numerical simulation of surface waves instability on a homogeneous grid. Physica D 321-322, 5166.CrossRefGoogle Scholar
Levi-Civita, T. 1925 Determination rigoureuse des ondes permanentes dampleur finie. Math. Ann. 93 (1), 264314.CrossRefGoogle Scholar
Longuet-Higgins, M.S. 1978 a The instabilities of gravity waves of finite amplitude in deep water. I. Superharmonics. Proc. R. Soc. A 360 (1703), 471488.Google Scholar
Longuet-Higgins, M.S. 1978 b The instabilities of gravity waves of finite amplitude in deep water. II. Subharmonics. Proc. R. Soc. A 360 (1703), 489505.Google Scholar
MacKay, R.S. & Saffman, P.G. 1986 Stability of water waves. Proc. R. Soc. A 406 (1830), 115125.Google Scholar
McLean, J.W. 1982 Instabilities of finite-amplitude water waves. J. Fluid Mech. 114, 315330.CrossRefGoogle Scholar
Nekrasov, A. 1921 On steady waves. Izv. Ivanovo-Voznesensk. Politekhn. In-ta 3, 5265.Google Scholar
Nguyen, H. & Strauss, W.A. 2020 Proof of modulational instability of Stokes waves in deep water. arXiv:2007.05018.Google Scholar
Shaw, R.P. 1979 Boundary integral equation methods applied to wave problems. Tech. Rep. State University of New York at Buffalo, Department of Engineering Science, Aerospace Engineering, and Nuclear Engineering.Google Scholar
Stokes, G.G. 1847 On the theory of oscillatory waves. Trans. Camb. Phil. Soc. 8, 441455.Google Scholar
Struik, D. 1926 Determination rigoureuse des ondes irrotationnelles periodiques dans un canal à profondeur finie. Math. Ann. 95, 595634.CrossRefGoogle Scholar
Whitham, G.B. 1967 Variational methods and applications to water waves. Proc. R. Soc. A 299, 625.Google Scholar
Whitham, G.B. 1974 Linear and Nonlinear Waves. Wiley-Interscience.Google Scholar
Yuen, H.C. & Lake, B.M. 1980 Instabilities of waves in deep water. Annu. Rev. Fluid Mech. 12 (1), 303334.CrossRefGoogle Scholar
Zakharov, V.E. 1968 Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys. 9 (2), 190194.CrossRefGoogle Scholar
Zakharov, V.E. & Ostrovsky, L. 2009 Modulation instability: the beginning. Physica D 238 (5), 540548.CrossRefGoogle Scholar
Supplementary material: File

Creedon and Deconinck supplementary material

Creedon and Deconinck supplementary material

Download Creedon and Deconinck supplementary material(File)
File 324.9 KB