Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-16T21:48:02.668Z Has data issue: false hasContentIssue false

Flow beneath a stagnant film on water: the Reynolds ridge

Published online by Cambridge University Press:  20 April 2006

John C. Scott
Affiliation:
Fluid Mechanics Research Institute, University of Essex, Colchester CO4 3SQ, Essex, England

Abstract

Surface-active material is present in most naturally occurring water samples, and it naturally diffuses steadily to free surfaces, where it both reduces the surface tension and gives the surface elastic properties which enable it to resist compression. When the water flows so that the surface layer is trapped and compressed against a fixed shallow-draught barrier the film material makes the surface incompressible, and flow beneath the barrier forms a viscous boundary layer under the film. The stresses associated with this boundary layer are found to distort the surface in the region of the leading edge of the film, giving rise to a phenomenon which is commonly observed in nature and which has been called the Reynolds ridge. This paper describes experimental work on the measurement of the ridge, and compares the results with a theoretical model due to Harper & Dixon. Good agreement is indicated.

Type
Research Article
Copyright
© 1982 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anon. 1974 Anal. Chem. 46, 799A.
Bell, G. 1954 Weather, 9, 386.
Burdon, R. S. 1926 Proc. Phys. Soc. Lond. 38, 148160.
Burdon, R. S. 1949 Surface Tension and the Spreading of Liquids, p. 68. Cambridge University Press.
Edser, E. 1926 General Physics for Students, 2nd edn, pp. 639645. Macmillan.
Gilbert, A. D. 1980 Opt. Acta 27, 767781.
Gilbert, A. D. & Scott, J. C. 1980 Opt. Acta 27, 753766.
Hall, R. O. 1936 Nature, 138, 466.
Harper, J. F. & Dixon, J. N. 1974 In Proc. 5th Australasian Conf. on Hydraulics and Fluid Mech., Christchurch, New Zealand, pp. 499505.
Holder, D. W. & North, R. J. 1963 Schlieren Methods. Notes on Appl. Sci. no. 31. London: H.M.S.O.
Langton, J. 1872 Nature 5, 241242.
Mccutchen, C. W. 1970 Science 170, 6164.
Mcdowell, R. S. & McCutchen, C. W. 1971 Science 172, 973.
Merson, R. L. & Quinn, J. A. 1965 A.I.Ch.E. J. 11, 391395.
Mockros, L. F. & Krone, R. B. 1968 Science 161, 361363.
Rayleigh, Lord 1890 Proc. R. Instn 13, 8597.
Reynolds, O. 1881 Brit. Assn Rep., pp. 524525.
Satterly, J. 1919 Trans. R. Soc. Canada 13, 109.
Satterly, J. 1956 Am. J. Phys. 24, 463.
Satterly, J. & Turnbull, R. 1929 Trans. R. Soc. Canada 23, 95118.
Schmidt, J. 1936 Nature 137, 777. (See also Nature 138, 20 (1936) for editorial comment.)
Scott, J. C. 1974 J. Phys. E: Sci. Instrum. 7, 747749.Google Scholar
Scott, J. C. 1979 In Surface Contamination: Its Genesis, Detection and Control (ed. K. L. Mittal), vol. 1, pp. 477497. Plenum.
Sellin, R. H. J. 1968 Nature 217, 536538.
Stansfield, H. 1936 Nature 137, 10731074 (See also Nature 138, 20 (1936) for editorial comment).
Thompson, J. C. 1919 Trans. R. Soc. Canada 13, 129138.
Thoreau, H. D. 1902 (reprinted 1962) The Journals of Henry D. Thoreau (ed. B. Torrey & F. H. Allen), vol. 6, pp. 326327 (1854); vol. 10, p. 256 (1858); vol. 11, pp. 408–409 (1879). Dover.
Woog, P. 1931 Annales de l'Office Nationale de Combustibles Liquides 6, 617653.