Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-18T19:06:16.689Z Has data issue: false hasContentIssue false

Fine-scale turbulent bursts in stable atmospheric boundary layer in complex terrain

Published online by Cambridge University Press:  08 November 2017

E. Kit
Affiliation:
Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46530, USA School of Mechanical Engineering, Tel Aviv University, Tel Aviv 69978, Israel
C. M. Hocut
Affiliation:
Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46530, USA US Army Research Laboratory, Battlefield Environment Division, White Sands Missile Range, NM 88002, USA
D. Liberzon
Affiliation:
Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46530, USA Department of Civil and Environmental Engineering, Technion, Haifa 32000, Israel
H. J. S. Fernando
Affiliation:
Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46530, USA Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46530, USA

Abstract

Turbulence in the atmospheric boundary layer (ABL) is usually measured using sonic anemometers (sonics), but coarse spatial (${\sim}10$  cm) and temporal (${\sim}32$  Hz) resolutions of sonics preclude direct measurement of fine-scale parameters such as the turbulent kinetic energy (TKE) dissipation rate $\unicode[STIX]{x1D700}$. Instead, $\unicode[STIX]{x1D700}$ is estimated using techniques based on Kolmogorov theory. Fine-scale measurements of ABL turbulence down to Kolmogorov scale were made with a sonic and hot-film anemometer dyad (a ‘combo’ probe) during the field campaigns of the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) programme. The hot-film probe was located on a gimbal within the sonic probe volume, and was automated to rotate in the horizontal plane to align with the mean flow measured by sonic. This procedure not only helped satisfy the requirement of hot-film alignment with the mean flow, but also allowed in situ calibration of hot-film probes. This paper analyses a period of nocturnal flow that was similar to a stratified parallel shear flow. The combo-probe measurements showed an interesting phenomenon – the occurrence of strong bursts, characterized by short-term increase of velocity fluctuations and simultaneous increase of TKE dissipation rate by orders of magnitude. These bursts were indicative of unusual turbulence activity at finer (${\sim}0.1$–0.4 m) scales that are not captured by sonics since the smallest scales resolved by the latter are greater than 0.6 m. With bursting present, the spectra exhibited bumps at scales intermediate to inertial and dissipation subranges, resembling a bottleneck phenomenon. Its manifestation, although unequivocally related to bursts, may not convincingly fit into the framework of previous bottleneck-effect theories that allude to either viscous effects or buoyancy effects modifying the local energy cascade via non-local effects. The origins of burst are yet to be identified. Stratified ABL with bursts exhibits non-Kolmogorov behaviour, and hence should be modelled with caution.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arora, S. C. & Azad, R. S. 1980 Applicability of the isotropic vorticity theory to an adverse pressure gradient flow. J. Fluid Mech. 97, 385404.CrossRefGoogle Scholar
Arya, S. P. S. 1972 The critical condition for the maintenance of turbulence in stratified flows. Q. J. R. Meteorol. Soc. 98, 264273.CrossRefGoogle Scholar
Augier, P., Galtier, G. & Billant, P. 2012 Kolmogorov laws for stratified turbulence. J. Fluid Mech. 709, 659670.CrossRefGoogle Scholar
Batchelor, G. K. & Townsend, A. A. 1947 Decay of vorticity in isotropic turbulence. Proc. R. Soc. Lond. A 190, 534550.Google Scholar
Cerutti, S. & Meneveau, C. 2000 Statistics of filtered velocity in grid and wake turbulence. Phys. Fluids 12 (5), 11431165.CrossRefGoogle Scholar
Champagne, F. H. 1978 On the fine-scale structure of the turbulent velocity field. J. Fluid Mech. 86, 67108.CrossRefGoogle Scholar
Chevillard, L., Castaing, B., Levequ, E. & Arneodo, A. 2006 Unified multifractal description of velocity increments statistics in turbulence: intermittency and skewness. Physica D 218, 7782.CrossRefGoogle Scholar
Davidson, P. A. 2004 Turbulence: An Introduction for Scientists and Engineers. Oxford University Press.Google Scholar
Dobler, W., Haugen, N. E., Yousef, T. A. & Brandenburg, A. 2003 Bottleneck effect in three-dimensional turbulence simulations. Phys. Rev. E 68, 026304.Google ScholarPubMed
Donzis, D. A. & Sreenivasan, K. R. 2010 The bottleneck effect and the Kolmogorov constant in isotropic turbulence. J. Fluid Mech. 657, 171188.CrossRefGoogle Scholar
Doran, J. C., Fast, J. D. & Horel, J. 2002 The VTMX 2000 campaign. Bull. Am. Meteorol. Soc. 83, 537551.2.3.CO;2>CrossRefGoogle Scholar
Durst, C. S. 1933 Notes on the variations in the structure of wind over different surfaces. Q. J. R. Meteorol. Soc. 59, 361374.CrossRefGoogle Scholar
Falkovich, G. 1994 Bottleneck phenomenon in developed turbulence. Phys. Fluids 6, 14111414.CrossRefGoogle Scholar
Fernando, H. J. S. & Hunt, J. C. R. 1996 Some aspects of turbulence and mixing in stably stratified layers. Dyn. Atmos. Oceans 23 (1), 3562.CrossRefGoogle Scholar
Fernando, H. J. S. & Pardyjak, E. R. 2013 Field studies delve into intricacies of mountain weather. EOS Trans. AGU 94, 313320.CrossRefGoogle Scholar
Fernando, H. J. S., Pardyjak, E. R., Di Sabatino, S., Chow, F. K., De Wekker, S. F. J., Hoch, S. W., Hacker, J., Pace, J. C., Pratt, T., Pu, Z. et al. 2015 The MATERHORN – unraveling the intricacies of mountain weather. Bull. Am. Meteorol. Soc. 96 (11), 19451967.CrossRefGoogle Scholar
Fernando, H. J. S. & Weil, J. C. 2010 Whither the stable boundary layer? A shift in the research agenda. Bull. Am. Meteorol. Soc. 91, 14751484.CrossRefGoogle Scholar
Gargett, A. E., Osborn, T. R. & Nasmyth, P. W. 1984 Local isotropy and the decay of turbulence in a stratified fluid. J. Fluid Mech. 144, 231280.CrossRefGoogle Scholar
Gotoh, T., Fukayama, D. & Nakano, T. 2002 Velocity field statistics in homogeneous steady turbulence obtained using a high-resolution direct numerical simulation. Phys. Fluids 14 (3), 10651081.CrossRefGoogle Scholar
Grachev, A. A., Leo, L. S., Di Sabatino, S., Fernando, H. J. S., Pardyjak, E. R. & Fairall, C. W. 2016 Structure of turbulence in katabatic flows below and above the wind-speed maximum. Boundary-Layer Meteorol. 159 (3), 469494.CrossRefGoogle Scholar
Kaimal, J. C. & Finnigan, J. J. 1994 Atmospheric Boundary Layer Flows: Their Structure and Measurement. Oxford University Press.CrossRefGoogle Scholar
Kaneda, Y., Ishihara, T., Yokokawa, M., Itakura, K. & Uno, A. 2003 Energy dissipation rate and energy spectrum in high resolution direct numerical simulations of turbulence in a periodic box. Phys. Fluids 15 (2), L21L24.CrossRefGoogle Scholar
Kit, E., Cherkassy, A., Saint, T. & Fernando, H. J. S. 2010 In situ calibration of hot-film probes using a co-located sonic anemometer: implementation of a neural network. J. Atmos. Ocean. Technol. 27, 2341.CrossRefGoogle Scholar
Kit, E. & Liberzon, D. 2016 3D-calibration of three- and four-sensor hot-film probes based on collocated sonic using neural networks. Meas. Sci. Technol. 27, 095901.CrossRefGoogle Scholar
Kline, S. J., Reynolds, W. C., Schraub, F. A. & Runstadler, P. W. 1967 The structure of turbulent boundary layers. J. Fluid Mech. 30 (4), 741773.CrossRefGoogle Scholar
Koop, C. G. 1981 A preliminary investigation of the interaction of internal gravity waves with a steady shearing motion. J. Fluid Mech. 113, 347386.CrossRefGoogle Scholar
Lehner, M., Whiteman, C. D., Hoch, S., Jensen, D., Pardyjak, E., Leo, L., Di Sabatino, S. & Fernando, H. J. S. 2015 A case study of the nocturnal boundary-layer evolution on a slope at the foot of a desert mountain. J. Appl. Meteorol. 54 (4), 732751.CrossRefGoogle Scholar
Leo, L. S., Thompson, M. Y., Di Sabatino, S. & Fernando, H. J. S. 2016 Stratified flow past a hill: dividing streamline concept revisited. Boundary-Layer Meteorol. 159 (3), 611634.CrossRefGoogle Scholar
Lundgren, T. S. 2008 Turbulent scaling. Phys. Fluids 20, 031301.CrossRefGoogle Scholar
Mahrt, L. 1989 Intermittency of atmospheric turbulence. J. Atmos. Sci. 46 (1), 7995.2.0.CO;2>CrossRefGoogle Scholar
Mahrt, L. 1998 Stratified atmospheric boundary layers and breakdown of models. Theor. Comput. Fluid Dyn. 11 (3), 263279.CrossRefGoogle Scholar
Mahrt, L. 2014 Stably stratified atmospheric boundary layers. Annu. Rev. Fluid Mech. 46, 2345.CrossRefGoogle Scholar
Mininni, P. D., Alexakis, A. & Pouquet, A. 2006 Large-scale flow effects, energy transfer, and self-similarity on turbulence. Phys. Rev. E 74, 016303.Google ScholarPubMed
Monti, P., Fernando, H. J. S., Princevac, M., Chan, W. C., Kowalewski, T. A. & Pardyjak, E. R. 2002 Observations of flow and turbulence in the nocturnal boundary layer over a slope. J. Atmos. Sci. 59, 25132534.2.0.CO;2>CrossRefGoogle Scholar
Nai-Ping, L., Neff, W. D. & Kaimal, J. C. 1983 Wave and turbulence structure in a disturbed nocturnal inversion. Boundary-Layer Meteorol. 26 (2), 141155.CrossRefGoogle Scholar
Nelkin, M. 1994 Universality and scaling in fully developed turbulence. Adv. Phys. 43, 143181.CrossRefGoogle Scholar
Ohya, Y. 2001 Wind-tunnel study of atmospheric stable boundary layers over a rough surface. Boundary-Layer Meteorol. 98, 5782.CrossRefGoogle Scholar
Ohya, Y., Nakamura, R. & Uchida, T. 2008 Intermittent bursting of turbulence in a stable boundary layer with low-level jet. Boundary-Layer Meteorol. 126, 349363.CrossRefGoogle Scholar
Pearson, B. R., Yousef, T. A., Haugen, N. E. L., Brandenburg, A. & Krogstad, P.-A. 2004 Delayed correlation between turbulent energy injection and dissipation. Phys. Rev. E 70, 056301.Google ScholarPubMed
Poulos, G. S., Blumen, W., Fritts, D. C., Lundquist, J. K., Sun, J., Burns, S, Nappo, C., Banta, R., Newsom, R., Cuxart, J. et al. 2002 CASES-99: a comprehensive investigation of the stable nocturnal boundary layer. Bull. Am. Meteorol. Soc. 83, 555581.2.3.CO;2>CrossRefGoogle Scholar
Praskovsky, A. & Oncley, S. 1997 Comprehensive measurements of the intermittency exponent in high Reynolds number turbulent flows. Fluid Dyn. Res. 21 (5), 331358.CrossRefGoogle Scholar
Princevac, M. & Fernando, H. J. S. 2008 Morning break-up of cold pools in complex terrain. J. Fluid Mech. 616, 99109.CrossRefGoogle Scholar
Rao, K. N., Narasimha, R. & Narayanan, M. B. 1971 The ‘bursting’ phenomenon in a turbulent boundary layer. J. Fluid Mech. 48, 339352.CrossRefGoogle Scholar
Riley, J. J. & Lindborg, E. 2008 Stratified turbulence: a possible interpretation of some geophysical turbulence measurements. J. Atmos. Sci. 65, 24162424.CrossRefGoogle Scholar
Saddoughi, S. G. & Veeravalli, S. V. 1994 Local isotropy in turbulent boundary layers at high Reynolds number. J. Fluid Mech. 268, 333372.CrossRefGoogle Scholar
Sharman, R. D., Cornman, L. B., Meymaris, G., Pearson, J. & Farrar, T. 2014 Description and derived climatologies of automated in situ eddy-dissipation-rate reports of atmospheric turbulence. J. Appl. Meteorol. Climatol. 53 (6), 14161432.CrossRefGoogle Scholar
She, Z.-S. & Jackson, E. 1993 On the universal form of energy spectra in fully developed turbulence. Phys. Fluids 5, 15261528.CrossRefGoogle Scholar
Shen, X. & Warhaft, Z. 2000 The anisotropy of the small scale structure in high Reynolds number (Re 𝜆 ∼ 1000) turbulent shear flow. Phys. Fluids 12 (11), 29762989.CrossRefGoogle Scholar
Smith, L. M. & Reynolds, W. C. 1991 The dissipation-range spectrum and the velocity-derivative skewness in turbulent flows. Phys. Fluids A 3, 992994.CrossRefGoogle Scholar
Sreenivasan, K. R. & Antonia, R. A. 1997 The phenomenology of small-scale turbulence. Annu. Rev. Fluid Mech. 29, 435472.CrossRefGoogle Scholar
Tsinober, A., Kit, E. & Dracos, T. 1992 Experimental investigation of the field of velocity gradients in turbulent flows. J. Fluid Mech. 242, 169192.CrossRefGoogle Scholar
Van Atta, C. W. & Antonia, R. A. 1980 Reynolds number dependence of skewness and flatness factors of turbulent velocity derivatives. Phys. Fluids 23, 252257.CrossRefGoogle Scholar
Verma, M. K. & Donzis, D. A. 2007 Energy transfer and bottleneck effect in turbulence. J. Phys. A 40, 44014412.Google Scholar
Vitkin, L., Liberzon, D., Grits, B. & Kit, E. 2014 Study of in situ calibration performance of hot-film probe collocated with a sonic using ‘virtual probe’ approach. Meas. Sci. Technol. 25, 075801.CrossRefGoogle Scholar
Waite, M. L. 2011 Stratified turbulence at the buoyancy scale. Phys. Fluids 23 (6), 066602.CrossRefGoogle Scholar
Yeung, P. K. & Zhou, Y. 1997 Universality of the Kolmogorov constant in numerical simulations of turbulence. Phys. Rev. E 56, 17461752.Google Scholar