Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-19T10:13:56.179Z Has data issue: false hasContentIssue false

Experimental study of the initial stages of wind waves' spatial evolution

Published online by Cambridge University Press:  24 June 2011

DAN LIBERZON*
Affiliation:
Tel Aviv University, School of Mechanical Engineering, Tel Aviv 69978, Israel
LEV SHEMER
Affiliation:
Tel Aviv University, School of Mechanical Engineering, Tel Aviv 69978, Israel
*
Present address: University of Notre Dame, Civil Engineering and Geological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA. Email address for correspondence: dan.liberzon.1@nd.edu

Abstract

Despite a significant progress and numerous publications over the last few decades a comprehensive understanding of the process of waves' excitation by wind still has not been achieved. The main goal of the present work was to provide as comprehensive as possible set of experimental data that can be quantitatively compared with theoretical models. Measurements at various air flow rates and at numerous fetches were carried out in a small scale, closed-loop, 5 m long wind wave flume. Mean airflow velocity and fluctuations of the static pressure were measured at 38 vertical locations above the mean water surface simultaneously with determination of instantaneous water surface elevations by wave gauges. Instantaneous fluctuations of two velocity components were recorded for all vertical locations at a single fetch. The water surface drift velocity was determined by the particle tracking velocimetry (PTV) method. Evaluation of spatial growth rates of waves at various frequencies was performed using wave gauge records at various fetches. Phase relations between various signals were established by cross-spectral analysis. Waves' celerities and pressure fluctuation phase lags relative to the surface elevation were determined. Pressure values at the water surface were determined by extrapolating the measured vertical profile of pressure fluctuations to the mean water level and used to calculate the form drag and consequently the energy transfer rates from wind to waves. Directly obtained spatial growth rates were compared with those obtained from energy transfer calculations, as well as with previously available data.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agnon, Y., Babanin, A. V., Young, I. R. & Chalikov, D. 2005 Fine scale inhomogeneity of wind–wave energy input, skewness, and asymmetry. Geophys. Res. Lett. 32, L12603.CrossRefGoogle Scholar
Athanassiadou, M. 2003 Wave and form drag: their relation in the linear gravity wave regime. Tellus 55A, 173180.CrossRefGoogle Scholar
Banner, M. L. & Peirson, W. L. 1998 Tangential stress beneath wind-driven air–water interface. J. Fluid Mech. 364, 115145.CrossRefGoogle Scholar
Belcher, S. E. & Hunt, J. C. R. 1998 Turbulent flow over hills and waves. Annu. Rev. Fluid Mech. 30, 507538.CrossRefGoogle Scholar
Belcher, S. E. & Wood, N. 1996 Form and wave drag due to stably stratified turbulent flow over low ridges. Q. J. R. Meteorol. Soc. 122, 863902.CrossRefGoogle Scholar
Benjamin, T. B. 1959 Shearing flow over a wavy boundary. J. Fluid Mech. 6, 161205.CrossRefGoogle Scholar
Caulliez, G., Makin, V. & Kudryavtsev, V. 2008 Drag of the water surface at very short fetches: observations and modeling. J. Phys. Oceanogr. 38, 20382055.CrossRefGoogle Scholar
Caulliez, G., Ricci, N. & Dupont, R. 1998 The generation of the first visible wind waves. Phys. Fluids 10 (4), 757759.CrossRefGoogle Scholar
Chapman, R. & Monaldo, F. M. 1995 A novel wave height sensor. J. Atmos. Ocean. Techol. 12, 190196.2.0.CO;2>CrossRefGoogle Scholar
Charnock, H. 1955 Wind stress on water surface. Q. J. R. Meteorol. Soc. 81, 639640.CrossRefGoogle Scholar
Choi, I. 1977 Contributions a l'étude des mecanismes physiques de la ghn8ration des ondes de capillarite-gravite a une interface air-eau. Thesis, Université d'Aix Marseille.Google Scholar
Conte, S. D. & Miles, J. W. 1959 On the integration of Orr–Sommerfeld equation. J. Soc. Ind. Appl. Maths 7, 361369.CrossRefGoogle Scholar
Donelan, M. A., Babanin, A. V., Young, I. R. & Banner, M. L. 2006 Wave-follower field, measurements of the wind-input spectral function. Part II. Parameterization of wind input. J. Phys. Oceanogr. 36, 16721689.CrossRefGoogle Scholar
Donelan, M. A., Babanin, A. V., Young, I. R., Banner, M. L. & McCormick, C. 2005 Wave-follower field measurements of the wind-input spectral function. Part I. Measurements and calibrations. J. Atmos. Ocean. Technol. 22, 799813.CrossRefGoogle Scholar
Donelan, M. A., Madsen, N., Kahma, K. K., Tsanis, I. K. & Drennman, W. M. 1999 Apparatus for atmospheric surface layer measurements over waves. J. Atmos. Ocean. Techol. 16, 11721182.2.0.CO;2>CrossRefGoogle Scholar
Drennan, W., Kimmo, K., Kahma, K. K. & Donelan, M. A. 1999 On momentum flux and velocity spectra over waves. Boundary-Layer Meterol. 92 (3), 489515.CrossRefGoogle Scholar
Elliott, J. A. 1972 Instrumentation for measuring static pressure fluctuations within the atmospheric boundary layer. Boundary-Layer Meterol. 22, 476495.CrossRefGoogle Scholar
Fedele, F., Cherneva, Z., Tayfun, M. A. & Guedes, Soares C. 2010 Nonlinear Schrödinger invariants and wave statistics. Phys. Fluids 22, 036601.CrossRefGoogle Scholar
van Gastel, K., Janssen, P. A. E. M. & Komen, G. J. 1985 On phase velocity and growth rate of wind-induced gravity–capillary waves. J. Fluid Mech. 161, 199216.CrossRefGoogle Scholar
Gill, G. C. 1976 Development and testing of a non-moving-parts static pressure inlet for use on ocean buoys. University of Michigan Rep., NOAA 01-6-038-115, 43 pp.Google Scholar
Hare, J. E., Hara, T., Edson, J. B. & Wilczak, J. M. 1997 A similarity analysis of the structure of airflow over surface waves. J. Phys. Oceanogr. 27, 10181037.2.0.CO;2>CrossRefGoogle Scholar
Herring, F., Leue, C., Wierzimok, D. & Janhe, B. 1998 Particle tracking velocimetry beneath water waves. Part II. Water waves. Exp. Fluids 24, 10.CrossRefGoogle Scholar
Hristov, T. S., Miller, S. D. & Friehe, C. A. 2003 Dynamic coupling of wind and ocean waves trough wave-induced air flow. Nature 442, 5558.CrossRefGoogle Scholar
Hsu, C. T. & Hsu, E. Y. 1983 On the structure of turbulent flow over a progressive water wave: theory and experiments on a transformed wave-following coordinate system. Part 2. J. Fluid Mech. 131, 123153.CrossRefGoogle Scholar
Janssen, P. A. E. M. 1986 The period-doubling of gravity–capillary waves. J. Fluid Mech. 172, 531546.CrossRefGoogle Scholar
Janssen, P. A. E. M. 1989 Wave-induced stress and drag of air flow over sea waves. J. Phys. Oceanogr. 19, 745754.2.0.CO;2>CrossRefGoogle Scholar
Janssen, P. A. E. M. 2004 The Interaction of Ocean Waves and Wind. Cambridge University Press.CrossRefGoogle Scholar
Janssen, P. A. E. M. & Lionello, P. 1989 On the interaction of wind and waves. Phil. Trans. R. Soc. Lond. A 329 (1604), 289301.Google Scholar
Jeffreys, H. 1925 On the formation of water waves by wind. Proc. R. Soc. Lond. A 104, 189206.Google Scholar
Jessup, A. T. & Zappa, C. J. 1997 Defining and quantifying microscale wave braking with infrared imagery. J. Geophys. Res. 102 (C10) 2314523153.CrossRefGoogle Scholar
Kawai, S. 1979 Generation of initial wavelets by instability of a coupled shear flow and their evolution to wind waves. J. Fluid Mech. 93, 661703.CrossRefGoogle Scholar
Kudryavtsev, V. N., Makin, V. K. & Meirink, J. F. 2001 Simplified model of the air flow above the waves. Boundary-Layer Meteorol. 100, 6390.CrossRefGoogle Scholar
Lamont-Smith, T. & Waseda, T. 2008 Wind waves growth at short fetch. J. Phys. Oceanogr. 38, 15971606.CrossRefGoogle Scholar
Larson, T. R. & Wright, J. W. 1974 Wind-generated gravity capillary waves: laboratory measurements of temporal growth rates using microwave backscatter. J. Fluid Mech. 70, 417436.CrossRefGoogle Scholar
Liberzon, D. 2010 Experimental study of the initial stages of water waves generation by wind. PhD thesis, Tel Aviv University, Tel Aviv.Google Scholar
Liberzon, D. & Shemer, L. 2010 An inexpensive method for measurements of static pressure fluctuations. J. Atmos. Ocean. Technol. 27 (4), 776784.CrossRefGoogle Scholar
Makin, V. K. & Kudryavtsev, V. N. 2002 Impact of dominant waves on sea drag. Boundary-Layer Meteorol. 103, 8399.CrossRefGoogle Scholar
Mastenbroek, C., Makin, V. K., Garat, M. H. & Giovanangeli, J. P. 1996 Experimental evidence of the rapid distortion of turbulence in the air flow over water waves. J. Fluid Mech. 318, 273302.CrossRefGoogle Scholar
Miles, J. W. 1957 On generation of surface waves by shear flows. J. Fluid Mech. 3, 185204.CrossRefGoogle Scholar
Miles, J. W. 1959 On generation of surface waves by shear flows. Part 2. J. Fluid Mech. 4, 568582.CrossRefGoogle Scholar
Miles, J. W. 1965 A note on the interaction between surface waves and wind profiles. J. Fluid Mech. 22, 823827.CrossRefGoogle Scholar
Miles, J. W. 1993 Surface wave generation revisited. J. Fluid Mech. 256, 427441.CrossRefGoogle Scholar
Nishiyama, R. T. & Bedard, A. J. Jr. 1991 A ‘Quad-disk’ static pressure probe for measurement in adverse atmospheres: With a comparative review of static pressure probe designs. Rev. Sci. Instrum. 62, 21932204.CrossRefGoogle Scholar
Papadimitrakis, Y. A., Hsu, E. Y. & Street, R. L. 1986 The role of wave-induced pressure fluctuations in the transfer processes across an air–water interface. J. Fluid Mech. 170, 113137.CrossRefGoogle Scholar
Peirson, W. L. 1997 Measurement of surface velocities and shears at a wavy air–water interface using particle image velocimetry. Exp. Fluids 2, 427437.CrossRefGoogle Scholar
Peirson, W. L. & Garcia, A. W. 2008 On the wind-induced growth of slow water waves of finite steepness. J. Fluid Mech. 608, 243274.CrossRefGoogle Scholar
Phillips, O. M. 1957 On generation of waves by turbulent wind. J. Fluid Mech. 2, 417495.CrossRefGoogle Scholar
Plant, W. J. 1982 A relationship between wind stress and wave slope. J. Geophys. Res. 87, 19611967.CrossRefGoogle Scholar
Plant, W. J. & Wright, J. W. 1977 Growth and equilibrium of short gravity waves in a wind tank. J. Fluid Mech. 82, 767793.CrossRefGoogle Scholar
Reul, N., Branger, H. & Giovanangeli, J. P. 1999 Air flow separation over unsteady breaking waves. Phys. Fluids 11 (7), 19591961.CrossRefGoogle Scholar
Reul, N., Branger, H. & Giovanangeli, J. P. 2008 Air flow structure over short-gravity breaking water waves. Boundary-Layer Meteorol. 505, 126477.Google Scholar
Reutov, V. P. & Troitskaya, Yu. I. 1996 Nonlinear effects due to water wave interactions with a turbulent wind. Izv. Acad. Nauk SSSR Atmos. Ocean. Phys. (English translation) 31 (6), 792801.Google Scholar
Robertson, P. 1972 A direction-insensitive static head sensor. J. Phys. E 5, 10801082.CrossRefGoogle Scholar
Shaikh, N. & Siddiqui, M. H. K. 2008 Airside velocity measurements over the wind-sheared water surface using particle image velocimetry. Ocean Dyn. 58, 6579.CrossRefGoogle Scholar
Shemdin, O. H. & Hsu, E. Y. 1967 Direct measurement of aerodynamic pressure above a simple progressive gravity wave. J. Fluid Mech. 30, 403416.CrossRefGoogle Scholar
Shlichting, H. & Gersten, K. 2000 Boundary Layer Theory, 8th revised and enlarged edn. McGraw Hill.CrossRefGoogle Scholar
Siddiqui, M. H. K. & Loewen, M. R. 2007 Characteristics of the wind drift layer and microscale breaking waves. J. Fluid Mech. 573, 417456.CrossRefGoogle Scholar
Siddiqui, M. H. K. & Loewen, M. 2009 Phase-averaged flow properties beneath microscale breaking waves. Boundary-Layer Meteorol. 134, 499523.CrossRefGoogle Scholar
Siddiqui, M. H. K., Loewen, M. R., Richardson, C., Asher, W. E. & Jessuo, A. T. 2001 Simultaneous particle image velocimetry and infrared imagery of microscale breaking waves. Phys. Fluids 13 (7), 18911903.CrossRefGoogle Scholar
Snyder, R. L. 1974 A field study of wave-induced pressure fluctuations above surface gravity waves. J. Mar. Res. 32, 497531.Google Scholar
Snyder, R. L., Dobson, F. W., Elliot, J. A. & Long, R. B. 1981 Array measurements of atmospheric pressure fluctuations above surface gravity waves. J. Fluid Mech. 102, 159.CrossRefGoogle Scholar
Stiassnie, M., Agnon, Y. & Janssen, P. A. M. 2007 Temporal and spatial growth of wind waves. J. Phys. Oceanogr. 37, 106114.CrossRefGoogle Scholar
Sullivan, P. P., McWilliams, J. C., & Moeng, C-H. 2000 Simulation of turbulent flow over idealized water waves. J. Fluid Mech. 404, 4785.CrossRefGoogle Scholar
Therrien, C. W. 1992 Discrete Random Signals and Statistical Signal Processing. Prentice Hall.Google Scholar
Troitskaya, Yu. I., Sergeev, D. A., Ermakova, O. S. & Balandina, G. N. 2010 Fine structure of the turbulent atmospheric boundary layer over the water surface. Izv. Atmos. Ocean. Phys. 46 (1), 109120.CrossRefGoogle Scholar
Uz, B. M, Hara, T., Bock, E. J. & Donelan, M. 2003 Laboratory observations of gravity–capillary waves under transient wind forcing. J. Geophys. Res. 108 (C2), 30503080.Google Scholar
Valenzuela, G. R. 1976 The growth of gravity–capillary waves in a coupled shear flow. J. Fluid Mech. 76, 229250.CrossRefGoogle Scholar
Veron, F. & Melville, W. K. 2001 Experiments on the stability and transition of wind-driven water surfaces. J. Fluid Mech. 446, 2565.CrossRefGoogle Scholar
Veron, F., Saxena, G. & Misra, S. 2007 Measurements of viscous tangential stresses in the separated airflow above wind waves. Geophys. Res. Lett. 34, L19603.CrossRefGoogle Scholar
Veron, F., Melville, W. K. & Lenain, L. 2008 Wave-coherent air-sea heat flux. J. Phys. Oceanogr. 38, 788802.CrossRefGoogle Scholar
Veron, F., Melville, W. K. & Lenain, L. 2009 Measurements of ocean surface waves and surface turbulence interactions. J. Phys. Oceanogr. 39, 23102323.CrossRefGoogle Scholar
Wilczak, J. M. & Bedard, A. J. 2004 A new turbulence microbarometer and its evaluation using the budget of horizontal heat flux. J. Atmos. Ocean. Technol. 21, 11701181.2.0.CO;2>CrossRefGoogle Scholar
Wu, J. 1975 Wind-induced drift currents. J. Fluid Mech. 68, 4970.CrossRefGoogle Scholar
Young, I. R. 1999 Wind Generated Ocean Waves. Elsevier.Google Scholar