Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-23T19:13:19.978Z Has data issue: false hasContentIssue false

Experimental study of a single bubble's motion in a liquid metal under a horizontal magnetic field

Published online by Cambridge University Press:  31 May 2024

Hao-Yang Gou
Affiliation:
School of Engineering Science, University of Chinese Academy of Sciences, Beijing 101408, PR China
Ming-Jiu Ni*
Affiliation:
School of Engineering Science, University of Chinese Academy of Sciences, Beijing 101408, PR China
Zhao-Hui Yao*
Affiliation:
School of Engineering Science, University of Chinese Academy of Sciences, Beijing 101408, PR China
*
Email addresses for correspondence: mjni@ucas.ac.cn, yaozh@ucas.edu.cn
Email addresses for correspondence: mjni@ucas.ac.cn, yaozh@ucas.edu.cn

Abstract

An ultrasonic phased array system is introduced to study the three-dimensional (3-D) movement of a single bubble in a GaInSn alloy under a transverse magnetic field (MF), which is verified by bubble experiments in water. The 3-D motion trajectories of individual bubbles in the GaInSn are obtained under a horizontal MF. As the MF becomes stronger, the bubble successively oscillates in random directions (R mode), a direction perpendicular to the MF (V mode), a direction parallel to the MF (P mode) and finally it rises straight (S mode). The significant anisotropy of the oscillation directions at a moderate MF intensity may be due to the anisotropy of the vortex structure around the bubble. Furthermore, the oscillation amplitude gradually declines with increasing MF intensity until the bubble trajectory finally becomes a straight line. Our measurements allow us to specify the characteristic regions for the observed bubble modes in the $N-Eo-Re$ parameter space (N is the magnetic interaction parameter, Eo is the Eötvös number and Re is the Reynolds number). In addition, more detailed characteristics of bubble terminal velocity are revealed, showing that the bubble velocities are closely related to the motion modes. The increase in bubble velocity at a moderate MF intensity is caused by the weakening oscillation. At a high strength, the MF monotonically suppresses the rise velocity of the bubble with a fixed scaling law.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andreini, R.J., Foster, J.S. & Callen, R.W. 1977 Characterization of gas bubbles injected into molten metals under laminar flow conditions. Metall. Trans. B 8 (4), 625631.CrossRefGoogle Scholar
Bender, D.J. & Hoffman, M.A. 1977 Two-phase-flow cooling concept for fusion reactor blankets. Conf. Rep. UCRL-78892 California Univ. Lawrence Livermore Lab.Google Scholar
Davidson, P.A. 2001 An Introduction to Magnetohydrodynamics, vol. 25. Cambridge University Press.Google Scholar
Eckert, S., Gerbeth, G. & Lielausis, O. 2000 a The behaviour of gas bubbles in a turbulent liquid metal magnetohydrodynamic flow: Part 1. Dispersion in quasi-two-dimensional magnetohydrodynamic turbulence. Intl J. Multiphase Flow 26 (1), 4566.CrossRefGoogle Scholar
Eckert, S., Gerbeth, G. & Lielausis, O. 2000 b The behaviour of gas bubbles in a turbulent liquid metal magnetohydrodynamic flow. Part 2. Magnetic field influence on the slip ratio. Intl J. Multiphase Flow 26 (1), 6782.CrossRefGoogle Scholar
Fauve, S., Laroche, C., Libchaber, A. & Perrin, B. 1984 Chaotic phases and magnetic order in a convective fluid. Phys. Rev. Lett. 52 (20), 1774.CrossRefGoogle Scholar
Garner, F.H. & Hammerton, D. 1954 Circulation inside gas bubbles. Chem. Engng Sci. 3 (1), 111.CrossRefGoogle Scholar
Gnyloskurenko, S.V. & Nakamura, T. 2003 Wettability effect on bubble formation at nozzles in liquid aluminum. Mater. Trans. 44 (11), 22982302.Google Scholar
Handschuh-Wang, S., Stadler, F.J. & Zhou, X. 2021 Critical review on the physical properties of gallium-based liquid metals and selected pathways for their alteration. J. Phys. Chem. C 125 (37), 2011320142.CrossRefGoogle Scholar
Huang, R. & Schmerr, L.W. Jr. 2009 Characterization of the system functions of ultrasonic linear phased array inspection systems. Ultrasonics 49 (2), 219225.Google ScholarPubMed
Irons, G.A. & Guthrie, R.I.L. 1980 Bubbling behaviour in molten metals. Can. Metall. Q. 19 (4), 381387.CrossRefGoogle Scholar
Ishimoto, J., Okubo, M., Kamiyama, S. & Higashitani, M. 1995 Bubble behavior in magnetic fluid under a nonuniform magnetic field. JSME Intl J. B 38 (3), 382387.CrossRefGoogle Scholar
Jin, K., Vanka, S.P. & Thomas, B.G. 2018 Large eddy simulations of electromagnetic braking effects on argon bubble transport and capture in a steel continuous casting mold. Metall. Mater. Trans. B 49 (3), 13601377.Google Scholar
Keplinger, O., Shevchenko, N. & Eckert, S. 2017 Validation of x-ray radiography for characterization of gas bubbles in liquid metals. IOP Conf. Ser. 228, 012009.CrossRefGoogle Scholar
Keplinger, O., Shevchenko, N. & Eckert, S. 2019 Experimental investigations of bubble chains in a liquid metal under the influence of a horizontal magnetic field. Intl J. Multiphase Flow 121, 103111.CrossRefGoogle Scholar
Legendre, D. & Magnaudet, J. 1998 The lift force on a spherical bubble in a viscous linear shear flow. J. Fluid Mech. 368, 81126.Google Scholar
Magnaudet, J. & Eames, I. 2000 The motion of high-Reynolds-number bubbles in inhomogeneous flows. Annu. Rev. Fluid Mech. 32 (1), 659708.Google Scholar
Mendelson, H.D. 1967 The prediction of bubble terminal velocities from wave theory. AIChE J. 13 (2), 250253.CrossRefGoogle Scholar
Moreau, R.J. 1990 Magnetohydrodynamics, vol. 3. Springer Science & Business Media.Google Scholar
Mori, Y., Hijikata, K. & Kuriyama, I. 1977 Experimental study of bubble motion in mercury with and without a magnetic field. Trans. ASME J. Heat Transfer 99, 404–410.Google Scholar
Morley, N.B., Smolentsev, S., Barleon, L., Kirillov, I.R. & Takahashi, M. 2000 Liquid magnetohydrodynamics–recent progress and future directions for fusion. Fusion Engng Des. 51, 701713.CrossRefGoogle Scholar
Ni, M.-J. & Li, J.-F. 2012 A consistent and conservative scheme for incompressible MHD flows at a low magnetic Reynolds number. Part 3. On a staggered mesh. J. Comput. Phys. 231 (2), 281298.CrossRefGoogle Scholar
Ni, M.-J., Munipalli, R., Huang, P., Morley, N.B. & Abdou, M.A. 2007 a A current density conservative scheme for incompressible MHD flows at a low magnetic Reynolds number. Part 2. On an arbitrary collocated mesh. J. Comput. Phys. 227 (1), 205228.CrossRefGoogle Scholar
Ni, M.-J., Munipalli, R., Morley, N.B., Huang, P. & Abdou, M.A. 2007 b A current density conservative scheme for incompressible MHD flows at a low magnetic Reynolds number. Part 1. On a rectangular collocated grid system. J. Comput. Phys. 227 (1), 174204.CrossRefGoogle Scholar
Pan, J.-H., Zhang, N.-M. & Ni, M.-J. 2018 The wake structure and transition process of a flow past a sphere affected by a streamwise magnetic field. J. Fluid Mech. 842, 248272.CrossRefGoogle Scholar
Richter, T., Keplinger, O., Shevchenko, N., Wondrak, T., Eckert, K., Eckert, S. & Odenbach, S. 2018 Single bubble rise in gainsn in a horizontal magnetic field. Intl J. Multiphase Flow 104, 3241.CrossRefGoogle Scholar
Samet, N., Maréchal, P. & Duflo, H. 2011 Ultrasound monitoring of bubble size and velocity in a fluid model using phased array transducer. NDT E Intl 44 (7), 621627.CrossRefGoogle Scholar
Samet, N., Marechal, P. & Duflo, H. 2015 Monitoring of an ascending air bubble in a viscous fluid/fiber matrix medium using a phased array transducer. Eur. J. Mech. B/Fluids 54, 4552.CrossRefGoogle Scholar
Schmerr, L.W. Jr. 2014 Fundamentals of Ultrasonic Phased Arrays, vol. 215. Springer.Google Scholar
Serizawa, A., Ida, T., Takahashi, O. & Michiyoshi, I. 1990 MHD effect on nak-nitrogen two-phase flow and heat transfer in a vertical round tube. Intl J. Multiphase Flow 16 (5), 761788.CrossRefGoogle Scholar
Sharaf, D.M., Premlata, A.R., Tripathi, M.K., Karri, B. & Sahu, K.C. 2017 Shapes and paths of an air bubble rising in quiescent liquids. Phys. Fluids 29 (12), 122104.CrossRefGoogle Scholar
Shew, W.L. & Pinton, J.-F. 2006 Dynamical model of bubble path instability. Phys. Rev. Lett. 97 (14), 144508.CrossRefGoogle ScholarPubMed
Shirota, M., Sanada, T., Sato, A. & Watanabe, M. 2008 Formation of a submillimeter bubble from an orifice using pulsed acoustic pressure waves in gas phase. Phys. Fluids 20 (4), 043301.CrossRefGoogle Scholar
Sommeria, J. & Moreau, R. 1982 Why, how, and when, MHD turbulence becomes two-dimensional. J. Fluid Mech. 118, 507518.CrossRefGoogle Scholar
Strumpf, E. 2017 Experimental study on rise velocities of single bubbles in liquid metal under the influence of strong horizontal magnetic fields in a flat vessel. Intl J. Multiphase Flow 97, 168185.Google Scholar
Thomas, B.G., Huang, X. & Sussman, R.C. 1994 Simulation of argon gas flow effects in a continuous slab caster. Metall. Mater. Trans. B 25 (4), 527547.CrossRefGoogle Scholar
Tripathi, M.K., Sahu, K.C. & Govindarajan, R. 2015 Dynamics of an initially spherical bubble rising in quiescent liquid. Nat. Commun. 6 (1), 6268.Google ScholarPubMed
Veldhuis, C., Biesheuvel, A. & Van Wijngaarden, L. 2008 Shape oscillations on bubbles rising in clean and in tap water. Phys. Fluids 20 (4), 040705.CrossRefGoogle Scholar
Wang, Z.H., Wang, S.D., Meng, X. & Ni, M.J. 2017 UDV measurements of single bubble rising in a liquid metal galinstan with a transverse magnetic field. Intl J. Multiphase Flow 94, 201208.CrossRefGoogle Scholar
Wooh, S.-C. & Shi, Y. 1998 Influence of phased array element size on beam steering behavior. Ultrasonics 36 (6), 737749.CrossRefGoogle Scholar
Yonas, G. 1967 Measurements of drag in a conducting fluid with an aligned field and large interaction parameter. J. Fluid Mech. 30 (4), 813821.Google Scholar
Zhang, C., Eckert, S. & Gerbeth, G. 2005 Experimental study of single bubble motion in a liquid metal column exposed to a dc magnetic field. Intl J. Multiphase Flow 31 (7), 824842.Google Scholar
Zhang, C., Eckert, S. & Gerbeth, G. 2007 The flow structure of a bubble-driven liquid-metal jet in a horizontal magnetic field. J. Fluid Mech. 575, 5782.CrossRefGoogle Scholar
Zhang, J. & Ni, M.-J. 2014 Direct simulation of single bubble motion under vertical magnetic field: paths and wakes. Phys. Fluids 26 (10), 102102.CrossRefGoogle Scholar
Zhang, J. & Ni, M.-J. 2017 What happens to the vortex structures when the rising bubble transits from zigzag to spiral? J. Fluid Mech. 828, 353373.CrossRefGoogle Scholar
Zhang, J., Ni, M.-J. & Moreau, R. 2016 Rising motion of a single bubble through a liquid metal in the presence of a horizontal magnetic field. Phys. Fluids 28 (3), 032101.CrossRefGoogle Scholar