Hostname: page-component-7c8c6479df-5xszh Total loading time: 0 Render date: 2024-03-29T06:03:10.028Z Has data issue: false hasContentIssue false

Evolution of solitary waves and undular bores in shallow-water flows over a gradual slope with bottom friction

Published online by Cambridge University Press:  07 August 2007

G. A. EL
Affiliation:
Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, UKG.El@lboro.ac.uk; R.H.J.Grimshaw@lboro.ac.uk
R. H. J. GRIMSHAW
Affiliation:
Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, UKG.El@lboro.ac.uk; R.H.J.Grimshaw@lboro.ac.uk
A. M. KAMCHATNOV
Affiliation:
Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow Region, 142190Russiakamch@isan.troitsk.ru

Abstract

This paper considers the propagation of shallow-water solitary and nonlinear periodic waves over a gradual slope with bottom friction in the framework of a variable-coefficient Korteweg–de Vries equation. We use the Whitham averaging method, using a recent development of this theory for perturbed integrable equations. This general approach enables us not only to improve known results on the adiabatic evolution of isolated solitary waves and periodic wave trains in the presence of variable topography and bottom friction, modelled by the Chezy law, but also, importantly, to study the effects of these factors on the propagation of undular bores, which are essentially unsteady in the system under consideration. In particular, it is shown that the combined action of variable topography and bottom friction generally imposes certain global restrictions on the undular bore propagation so that the evolution of the leading solitary wave can be substantially different from that of an isolated solitary wave with the same initial amplitude. This non-local effect is due to nonlinear wave interactions within the undular bore and can lead to an additional solitary wave amplitude growth, which cannot be predicted in the framework of the traditional adiabatic approach to the propagation of solitary waves in slowly varying media.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Apel, J. P. 2003 A new analytical model for internal solitons in the ocean. J. Phys. Oceanogr. 33, 2247.2.0.CO;2>CrossRefGoogle Scholar
Avilov, V. V., Krichever, I. M. & Novikov, S. P. 1987 Evolution of Whitham zone in the theory of Korteweg-de Vries. Sov. Phys. Dokl. 32, 564.Google Scholar
Benjamin, T. B. & Lighthill, M. J. 1954 On cnoidal waves and bores. Proc. R. Soc. Lond. A 224, 448Google Scholar
Boussinesq, J. 1872 Théorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. J. Math. Pures Appl. 17, 55.Google Scholar
Dubrovin, B. A. & Novikov, S. P. 1989 Hydrodynamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory. Russian Math. Surveys 44, 35.CrossRefGoogle Scholar
El, G. A. 2005 Resolution of a shock in hyperbolic systems modified by weak dispersion. Chaos 15, 037103.CrossRefGoogle ScholarPubMed
Fornberg, D. & Whitham, G. B. 1978 A numerical and theoretical study of certain nonlinear wave phcnomena. Phil Trans. R. Soc. Lond. A 289, 373.Google Scholar
Gradshtein, I. S. & Ryzhik, I. M. 1980 Table of Integrals, Series, and Products. Academic.Google Scholar
Grimshaw, R. 1979 Slowly varying solitary waves. I Korteweg-de Vries equation. Proc. Soc. Lond. A 368, 359.Google Scholar
Grimshaw, R. 1981 Evolution equations for long nonlinear internal waves in stratified shear flows. Stud. Appl. Maths 65, 159.CrossRefGoogle Scholar
Grimshaw, R. 2007 Internal solitary waves in a variable medium. Gesellschaft Angew. Math. 30, 96109.Google Scholar
Grimshaw, R. Pelinovsky, E. & Talipova, T. 2003 Damping of large-amplitude solitary waves. Wave Motion 37, 351.CrossRefGoogle Scholar
Grimshaw, R. H. J. & Smyth, N. F. 1986 Resonant flow of a stratified fluid over topography. J. Fluid Mech. 169, 429.CrossRefGoogle Scholar
Gurevich, A. V., Krylov, A. L. & El, G. A. 1992 Evolution of a Riemann wave in dispersive hydrodynamics. Sov. Phys. JETP 74, 957.Google Scholar
Gurevich, A. V., Krylov, A. L. & Mazur, N. G. 1989 Quasi-simple waves in Korteweg-de Fries hydrodynamics. Zh. Eksp. Teor. Fiz. 95, 1674.Google Scholar
Gurevich, A. V. & Pitaevskii, L. P. 1974 Nonstationary structure of a collisionless shock wave. Sov. Phys. JETP 38, 291.Google Scholar
Gurevich, A. V. & Pitaevskii, L. P. 1987 Averaged description of waves in the Korteweg-de Vries-Burgers equation. Sov. Phys. JETP 66, 490.Google Scholar
Gurevich, A. V. & Pitaevskii, L. P. 1991 Nonlinear waves with dispersion and non-local damping. Sov. Phys. JETP 72, 821.Google Scholar
Johnson, R. S. 1970 A non-linear equation incorporating damping and dispersion. J. Fluid Mech. 42, 49.CrossRefGoogle Scholar
Johnson, R. S. 1973 a On the development of a solitary wave moving over an uneven bottom. Proc. Camb. Phil. Soc. 73, 183.CrossRefGoogle Scholar
Johnson, R. S. 1973 b On an asymptotic solution of the Korteweg-de Vries equation with slowly varying coefficients. J. Fluid Mech. 60, 813.CrossRefGoogle Scholar
Johnson, R. S. 1997 A Modern Introduction to the Mathematical Theory of Water Waves. Cambridge University Press.CrossRefGoogle Scholar
Kamchatnov, A. M. 2000 Nonlinear Periodic Waves and Their Modulations – An Introductory Course. World Scientific.CrossRefGoogle Scholar
Kamchatnov, A. M. 2004 On Whitham theory for perturbed integrable equations. Physica D 188, 247.Google Scholar
Lax, P. D., Levermore, C. D. & Venakides, S. 1994 The generation and propagation of oscillations in dispersive initial value problems and their limiting behavior. Important Developments in Soliton Theory (ed. Focas, A. S. & Zakharov, V. E.), p. 205. Springer.Google Scholar
Miles, J. W. 1979 On the Korteweg-de Vries equation for a gradually varying channel. J. Fluid Mech 91, 181.CrossRefGoogle Scholar
Miles, J. W. 1983 a Solitary wave evolution over a gradual slope with turbulent friction. J. Phys. Oceanogr. 13, 551.2.0.CO;2>CrossRefGoogle Scholar
Miles, J. W. 1983 b Wave evolution over a gradual slope with turbulent friction. J. Fluid Mech. 133, 207.CrossRefGoogle Scholar
Myint, S. & Grimshaw, R. H. J. 1995 The modulation of nonlinear periodic wavetrains by dissipative terms in the Korteweg-de Vries equation. Wave Motion 22, 215.CrossRefGoogle Scholar
Ostrovsky, L. A. & Pelinovsky, E. N. 1970 Wave transformation on the surface of a fluid of variable depth. Akad. Nauk SSSR, Izv. Atmos. Ocean Phys. 6, 552.Google Scholar
Ostrovsky, L. A. & Pelinovsky, E. N. 1975 Refraction of nonlinear sea waves in a coastal zone. Akad. Nauk SSSR, Izv. Atmos. Ocean Phys. 11, 37.Google Scholar
Smyth, N. F. 1987 Modulation theory for resonant flow over topography. Proc. R. Soc. Lond. A 409, 79.Google Scholar
Whitham, G. B. 1965 Non-linear dispersive waves. Proc. R. Soc. Lond. A 283, 238.Google Scholar
Whitham, G. B. 1974 Linear and Nonlinear Waves. Wiley–Interscience.Google Scholar