Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-17T16:14:00.788Z Has data issue: false hasContentIssue false

Electromagnetically driven anticyclonic rotation in spherical Couette flow

Published online by Cambridge University Press:  24 April 2023

D. Proal
Affiliation:
Instituto de Investigación en Ciencias Básicas y Aplicadas – Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico
D.R. Domínguez-Lozoya
Affiliation:
Instituto de Energías Renovables – Universidad Nacional Autónoma de Mexico, Temixco, Morelos 62209, Mexico
A. Figueroa*
Affiliation:
CONACYT-Centro de Investigación en Ciencias-Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico
M. Rivero
Affiliation:
Instituto de Investigaciones en Materiales, Unidad Morelia, Universidad Nacional Autónoma de México, 58190 Morelia, Michoacán, Mexico
S. Piedra
Affiliation:
CONACYT – Centro de Ingeniería y Desarrollo Industrial, Querétaro, Querétaro 76270, Mexico
J. Núñez
Affiliation:
Escuela Nacional de Estudios Superiores, Unidad Morelia, Universidad Nacional Autónoma de México, 58190 Morelia, Michoacán, Mexico
*
Email address for correspondence: alfil@uaem.mx

Abstract

The electromagnetically driven anticyclonic flow in the wide gap of a rotating concentric spheres system is studied experimentally and numerically in the laminar regime. The working fluid is an electrolyte contained in the spherical gap. The outer sphere rotates at constant angular speed, and the inner sphere is at rest. The electromagnetic stirring is generated due to the interaction of a direct current, which is injected radially through ring-shaped electrodes located at the equatorial zone of each sphere, and a dipolar magnetic field produced by a permanent magnet located inside the inner sphere. Experimental velocity fields in the equatorial plane were obtained with particle image velocimetry. Additionally, full three-dimensional numerical simulations were performed. The high shearing at the equatorial region promotes an instability that can be perceived as a triggering mechanism of four tornado-like vortical structures tilted and entangled in the polar direction. The instability structure rotates in either the cyclonic or the anticyclonic direction, depending on the flow parameters, namely, the angular velocity of the outer sphere and the applied electric current. To the best knowledge of the authors, this is the first time the phenomenon under study is reported with electromagnetic forcing. The numerical results agree quantitatively with the experimental observations.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, M.M., Stone, D.R., Zimmerman, D.S. & Lathrop, D.P. 2015 Liquid sodium models of the Earth's core. Prog. Earth Planet. Sci. 1, 29.CrossRefGoogle Scholar
Anderson, B.J., Johnson, C.L., Korth, H., Slavin, J.A., Winslow, R.M., Phillips, R.J., McNutt, R.L. Jr. & Solomon, S.C. 2014 Steady-state field-aligned currents at Mercury. Geophys. Res. Lett. 41 (21), 74447452.CrossRefGoogle Scholar
Avalos-Zúñiga, R.A. & Rivero, M. 2022 Theoretical modeling of a vortex-type liquid metal MHD generator for energy harvesting applications. Sustain. Energy Technol. Assess. 52, 102056.Google Scholar
Brito, D., Alboussière, T., Cardin, P., Gagnière, N., Jault, D., La Rizza, P., Masson, J.-P., Nataf, H.-C. & Schmitt, D. 2011 Zonal shear and super-rotation in a magnetized spherical Couette-flow experiment. Phys. Rev. E 83, 066310.CrossRefGoogle Scholar
Cuevas, S., Smolentsev, S. & Abdou, M.A. 2006 On the flow past a magnetic obstacle. J. Fluid Mech. 553, 227252.CrossRefGoogle Scholar
Figueroa, A., Cuevas, S. & Ramos, E. 2011 Electromagnetically driven oscillatory shallow layer flow. Phys. Fluids 23 (1), 013601.CrossRefGoogle Scholar
Figueroa, A., Rivero, M., Núñez, J., Rojas, J.A. & Rivera, I. 2021 Oscillatory flow between concentric spheres driven by an electromagnetic force. J. Fluid Mech. 920, A5.CrossRefGoogle Scholar
Figueroa, A., Rojas, J.A., Rosales, J. & Vázquez, F. 2016 Electromagnetically driven flow between concentric spheres: experiments and simulations. In Recent Advances in Fluid Dynamics with Environmental Applications (ed. J. Klapp, L.D.G. Sigalotti, A. Medina, A. López & G. Ruiz-Chavarría), pp. 253–264. Springer.CrossRefGoogle Scholar
Figueroa, A., Schaeffer, N., Nataf, H.-C. & Schmitt, D. 2013 Modes and instabilities in magnetized spherical Couette flow. J. Fluid Mech. 716, 445469.CrossRefGoogle Scholar
Garcia, F., Seilmayer, M., Giesecke, A. & Stefani, F. 2019 Modulated rotating waves in the magnetised spherical Couette system. J. Nonlinear Sci. 29 (6), 27352759.CrossRefGoogle Scholar
Garcia, F., Seilmayer, M., Giesecke, A. & Stefani, F. 2020 Chaotic wave dynamics in weakly magnetized spherical Couette flows. Chaos 30 (4), 043116.CrossRefGoogle ScholarPubMed
Garcia, F., Seilmayer, M., Giesecke, A. & Stefani, F. 2021 Long term time dependent frequency analysis of chaotic waves in the weakly magnetized spherical Couette system. Physica D 418, 132836.CrossRefGoogle Scholar
Garcia, F. & Stefani, F. 2018 Continuation and stability of rotating waves in the magnetized spherical Couette system: secondary transitions and multistability. Proc. R. Soc. A 474, 2220.CrossRefGoogle ScholarPubMed
Gertsenshtein, S., Jilenko, D. & Krivonosova, O. 2002 Stability and transition to chaos in the spherical Couette flow with counter rotating boundaries. AIP Conf. Proc. 622, 373.CrossRefGoogle Scholar
Gissinger, C., Ji, H. & Goodman, J. 2011 Instabilities in magnetized spherical Couette flow. Phys. Rev. E 84, 026308.CrossRefGoogle ScholarPubMed
Hollerbach, R. 1994 Magnetohydrodynamic Ekman and Stewartson layers in a rotating spherical shell. Proc. R. Soc. Lond. A 444 (1921), 333346.Google Scholar
Hollerbach, R. 2001 Super- and Counter-Rotating Jets and Vortices in Strongly Magnetic Spherical Couette Flow, pp. 189197. Springer.Google Scholar
Hollerbach, R. 2009 Non-axisymmetric instabilities in magnetic spherical Couette flow. Proc. R. Soc. A 465 (2107), 20032013.CrossRefGoogle Scholar
Hollerbach, R., Canet, E. & Fournier, A. 2007 Spherical Couette flow in a dipolar magnetic field. Eur. J. Mech. (B/Fluids) 26 (6), 729737.CrossRefGoogle Scholar
Hollerbach, R., Junk, M. & Egbers, C. 2006 Non-axisymmetric instabilities in basic state spherical Couette flow. Fluid Dyn. Res. 38, 257273.CrossRefGoogle Scholar
Hollerbach, R. & Skinner, S. 2001 Instabilities of magnetically induced shear layers and jets. Proc. R. Soc. Lond. A 457 (2008), 785802.CrossRefGoogle Scholar
Hollerbach, R., Wei, X., Noir, J. & Jackson, A. 2013 Electromagnetically driven zonal flows in a rapidly rotating spherical shell. J. Fluid Mech. 725, 428445.CrossRefGoogle Scholar
Kaplan, E., Nataf, H.-C. & Schaeffer, N. 2018 Dynamic domains of the Derviche Tourneur sodium experiment: simulations of a spherical magnetized Couette flow. Phys. Rev. Fluids 3 (3), 34608.CrossRefGoogle Scholar
Kasprzyk, C., Kaplan, E., Seilmayer, M. & Stefani, F. 2017 Transitions in a magnetized quasi-laminar spherical Couette flow. Magnetohydrodynamics 53 (2), 393401.CrossRefGoogle Scholar
Le Bars, M., Barik, A., Burmann, F., Lathrop, D.P., Noir, J., Schaeffer, N. & Triana, S.A. 2021 Fluid dynamics experiments for planetary interiors. Surv. Geophys. 43, 229261.CrossRefGoogle ScholarPubMed
Marcus, P.S. & Tuckerman, L.S. 1987 a Simulation of flow between concentric rotating spheres. Part 1. Steady states. J. Fluid Mech. 185, 130.CrossRefGoogle Scholar
Marcus, P.S. & Tuckerman, L.S. 1987 b Simulation of flow between concentric rotating spheres. Part 2. Transitions. J. Fluid Mech. 185, 3165.CrossRefGoogle Scholar
Ogbonna, J., Garcia, F., Gundrum, T., Seilmayer, M. & Stefani, F. 2020 Experimental investigation of the return flow instability in magnetized spherical Couette flows. Phys. Fluids 32 (12), 124119.CrossRefGoogle Scholar
Piedra, S., Rojas, J., Rivera, I. & Figueroa, A. 2022 Vortex breakdown in time-dependent electromagnetically driven flow between concentric spheres. Phys. Fluids 34, 063603.CrossRefGoogle Scholar
Proal, D., Segura, D., Domínguez, R., Rivero, M. & Figueroa, A. 2022 Study of the spherical Couette flow with electromagnetic stirring. Eur. J. Mech. (B/Fluids) 92, 4048.CrossRefGoogle Scholar
Rüdiger, G., Kitchatinov, L.L. & Hollerbach, R. 2013 Magnetic spherical Couette flow. In Magnetic Processes in Astrophysics, chap. 7, pp. 287–326. Wiley-VCH.CrossRefGoogle Scholar
Schmitt, D., Alboussière, T., Brito, D., Cardin, P., Gagnière, N., Jault, D. & Nataf, H.-C. 2008 Rotating spherical Couette flow in a dipolar magnetic field: experimental study of magneto-inertial waves. J. Fluid Mech. 604, 175197.CrossRefGoogle Scholar
Sisan, D.R., Mujica, N., Tillotson, W.A., Huang, Y.M., Dorland, W., Hassam, A.B., Antonsen, T.M. & Lathrop, D.P. 2004 Experimental observation and characterization of the magnetorotational instability. Phys. Rev. Lett. 93 (11), 811.CrossRefGoogle ScholarPubMed
Soward, A.M. & Dormy, E. 2010 Shear-layers in magnetohydrodynamic spherical Couette flow with conducting walls. J. Fluid Mech. 645, 145185.CrossRefGoogle Scholar
Stelzer, Z., Cébron, D., Miralles, S., Vantieghem, S.N., Scarfe, P. & Jackson, A. 2015 a Experimental and numerical study of electrically driven magnetohydrodynamic flow in a modified cylindrical annulus. I. Base flow. Phys. Fluids 27 (7), 077101.CrossRefGoogle Scholar
Stelzer, Z., Miralles, S., Cébron, D., Noir, J., Vantieghem, S. & Jackson, A. 2015 b Experimental and numerical study of electrically driven magnetohydrodynamic flow in a modified cylindrical annulus. II. Instabilities. Phys. Fluids 27 (8), 084108.CrossRefGoogle Scholar
Thielicke, W. & Stamhuis, E.J. 2014 Towards user-friendly, affordable and accurate digital particle image velocimetry in Matlab. J. Open Res. Softw. 2, pe30.CrossRefGoogle Scholar
Tuckerman, L. & Marcus, P. 1985 Formation of Taylor vortices in spherical Couette flow. In Ninth International Conference on Numerical Methods in Fluid Dynamics, Lecture Notes in Physics (ed. Soubbaramayer & J.P. Boujot), vol. 218, pp. 552–556. Springer.CrossRefGoogle Scholar
Votyakov, E.V. & Kassinos, S.C. 2010 Core of the magnetic obstacle. J. Turbul. 11, N49.CrossRefGoogle Scholar
Zhilenko, D.Y., Krivonosova, O.É. & Nikitin, N.V. 2007 Development of three-dimensional flow structures in the laminar–turbulent transition in a wide spherical layer. Dokl. Phys. 53, 256260.CrossRefGoogle Scholar

Proal et al. supplementary material

See "Proal et al. Supplementary Movie Captions"

Download Proal et al. supplementary material(Video)
Video 6.6 MB
Supplementary material: File

Proal et al. Supplementary Movie Captions

Proal et al. Supplementary Movie Captions

Download Proal et al. Supplementary Movie Captions(File)
File 41.5 KB