Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-16T12:15:40.103Z Has data issue: false hasContentIssue false

Coffee stain effect on a fibre from axisymmetric droplets

Published online by Cambridge University Press:  27 February 2023

Marie Corpart
Affiliation:
CNRS, Laboratoire de Physique des Solides, Université Paris-Saclay, 91405 Orsay, France
Frédéric Restagno
Affiliation:
CNRS, Laboratoire de Physique des Solides, Université Paris-Saclay, 91405 Orsay, France
François Boulogne*
Affiliation:
CNRS, Laboratoire de Physique des Solides, Université Paris-Saclay, 91405 Orsay, France
*
Email address for correspondence: francois.boulogne@cnrs.fr

Abstract

The so-called coffee stain effect has been intensively studied over the past decades, but most of the studies have focused on sessile droplets. In this paper, we analyse the origin of the difference between the deposition of suspended particles in a sessile drop and in an axisymmetric drop deposited on a fibre. First, we model the shape of a drop on a fibre and its evaporative flux with some approximations to derive analytical calculations. Then, for pinned contact lines, we solve the hydrodynamics equations in the liquid phase under the lubrication approximation to determine the flow velocity toward the contact lines. We comment on these results by comparison to a sessile drop of similar evaporating conditions, and we show that the substrate curvature plays a role on the contact line depinning, the local evaporative flux and the liquid flow field. The competition between the advection and the Brownian motion indicates that the transport of the particles toward the contact line occurs in a volume localised in the close vicinity of the contact lines for a drop on a fibre. Thus, the fibre geometry induces a weaker accumulation of particles at the contact line compared to a sessile drop, leading to the more homogeneous deposit observed experimentally.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abramowitz, M. & Stegun, I.A. 1972 Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover.Google Scholar
Batchelor, G.K. 2000 An Introduction to Fluid Dynamics. Cambridge University Press.CrossRefGoogle Scholar
Berteloot, G., Hoang, A., Daerr, A., Kavehpour, H.P, Lequeux, F. & Limat, L. 2012 Evaporation of a sessile droplet: inside the coffee stain. J. Colloid Interface Sci. 370, 155161.CrossRefGoogle ScholarPubMed
Bossis, G. & Brady, J.F. 1989 The rheology of Brownian suspensions. J. Chem. Phys. 91 (3), 18661874.CrossRefGoogle Scholar
Boulogne, F., Ingremeau, F., Dervaux, J., Limat, L. & Stone, H.A. 2015 Homogeneous deposition of particles by absorption on hydrogels. Europhys. Lett. 112 (4), 48004.CrossRefGoogle Scholar
Boulogne, F., Ingremeau, F., Limat, L. & Stone, H.A. 2016 Tuning the receding contact angle on hydrogels by addition of particles. Langmuir 32 (22), 55735579.CrossRefGoogle ScholarPubMed
Boulogne, F., Ingremeau, F. & Stone, H.A. 2017 Coffee-stain growth dynamics on dry and wet surfaces. J. Phys. 29 (7), 074001.Google ScholarPubMed
Brochard-Wyart, F., Di Meglio, J.-M., Quere, D. & De Gennes, P.-G. 1991 Spreading of nonvolatile liquids in a continuum picture. Langmuir 7 (2), 335338.CrossRefGoogle Scholar
Brutin, D. & Starov, V. 2018 Recent advances in droplet wetting and evaporation. Chem. Soc. Rev. 47, 558585.CrossRefGoogle ScholarPubMed
Carroll, B.J. 1976 The accurate measurement of contact angle, phase contact areas, drop volume, and Laplace excess pressure in drop-on-fiber systems. J. Colloid Interface Sci. 57 (3), 488495.CrossRefGoogle Scholar
Cazabat, A.-M. & Guéna, G. 2010 Evaporation of macroscopic sessile droplets. Soft Matt. 6 (12), 25912612.CrossRefGoogle Scholar
Chou, T.-H., Hong, S.-J., Liang, Y.-E., Tsao, H.-K. & Sheng, Y.-J. 2011 Equilibrium phase diagram of drop-on-fiber: coexistent states and gravity effect. Langmuir 27 (7), 36853692.CrossRefGoogle ScholarPubMed
Cooke, J.R. 1967 Some theoretical considerations in stomatal diffusion: a field theory approach. Acta Biotheor. 17 (3), 95124.CrossRefGoogle Scholar
Corpart, M., Dervaux, J., Poulard, C., Restagno, F. & Boulogne, F. 2022 Evaporation of a liquid coated on a fiber. Europhys. Lett. 139 (4), 43001.CrossRefGoogle Scholar
Deegan, R.D. 2000 Pattern formation in drying drops. Phys. Rev. E 61, 475485.CrossRefGoogle ScholarPubMed
Deegan, R.D., Bakajin, O., Dupont, T.F., Huber, G., Nagel, S.R. & Witten, T.A. 1997 Capillary flow as the cause of ring stains from dried liquid drops. Nature 389 (6653), 827829.CrossRefGoogle Scholar
Deegan, R.D., Bakajin, O., Dupont, T.F., Huber, G., Nagel, S.R. & Witten, T.A. 2000 Contact line deposits in an evaporating drop. Phys. Rev. E 62, 756765.CrossRefGoogle Scholar
Duprat, C. 2022 Moisture in textiles. Annu. Rev. Fluid Mech. 54 (1), 443467.CrossRefGoogle Scholar
Ferguson, A. 1912 XXXVIII. Photographic measurements of pendent drops. Lond. Edinb. Dublin Philos. Mag. J. Sci. 23 (135), 417430.CrossRefGoogle Scholar
Freed-Brown, J. 2014 Evaporative deposition in receding drops. Soft Matt. 10, 95069510.CrossRefGoogle ScholarPubMed
Gelderblom, H., Diddens, C. & Marin, A 2022 Evaporation-driven liquid flow in sessile droplets. Soft Matt. 18, 85358553.CrossRefGoogle ScholarPubMed
Gelderblom, H., Marin, A.G., Nair, H., van Houselt, A., Lefferts, L., Snoeijer, J.H. & Lohse, D. 2011 How water droplets evaporate on a superhydrophobic substrate. Phys. Rev. E 83, 026306.CrossRefGoogle ScholarPubMed
Gupta, A., Konicek, A.R., King, M.A., Iqtidar, A., Yeganeh, M.S. & Stone, H.A. 2021 Effect of gravity on the shape of a droplet on a fiber: nearly axisymmetric profiles with experimental validation. Phys. Rev. Fluids 6, 063602.CrossRefGoogle Scholar
Hamamoto, Y., Christy, J.R.E. & Sefiane, K. 2011 Order-of-magnitude increase in flow velocity driven by mass conservation during the evaporation of sessile drops. Phys. Rev. E 83, 051602.CrossRefGoogle ScholarPubMed
Hu, H. & Larson, R.G. 2005 Analysis of the microfluid flow in an evaporating sessile droplet. Langmuir 21 (9), 39633971.CrossRefGoogle Scholar
Joanny, J.F. & de Gennes, P.G. 1984 A model for contact angle hysteresis. J. Chem. Phys. 81 (1), 552562.CrossRefGoogle Scholar
Jones, E., Oliphant, T. & Peterson, P. 2001 SciPy: Open source scientific tools for Python.Google Scholar
Kajiya, T., Kobayashi, W., Okuzono, T. & Doi, M. 2009 Controlling the drying and film formation processes of polymer solution droplets with addition of small amount of surfactants. J. Phys. Chem. B 113 (47), 1546015466.CrossRefGoogle ScholarPubMed
Kim, H., Boulogne, F., Um, E., Jacobi, I., Button, E. & Stone, H.A. 2016 Controlled uniform coating from the interplay of Marangoni flows and surface-adsorbed macromolecules. Phys. Rev. Lett. 116, 124501.CrossRefGoogle ScholarPubMed
Larson, R.G. 2014 Transport and deposition patterns in drying sessile droplets. AIChE J. 60 (5), 15381571.CrossRefGoogle Scholar
Lide, D.R. (Ed.) 2008 CRC Handbook of Chemistry and Physics, 89th edn. CRC/Taylor and Francis.Google Scholar
Lorenceau, E., Senden, T. & Quéré, D. 2006 Wetting of fibers. In Molecular Gels (ed. Richard G. Weiss & Pierre Terech), pp. 223–237. Springer.CrossRefGoogle Scholar
Mampallil, D. & Eral, H.B. 2018 A review on suppression and utilization of the coffee-ring effect. Adv. Colloid Interface Sci. 252, 3854.CrossRefGoogle ScholarPubMed
Marin, A.G., Gelderblom, H., Lohse, D. & Snoeijer, J.H. 2011 a Order-to-disorder transition in ring-shaped colloidal stains. Phys. Rev. Lett. 107, 085502.CrossRefGoogle ScholarPubMed
Marin, A.G., Gelderblom, H., Lohse, D. & Snoeijer, J.H. 2011 b Rush-hour in evaporating coffee drops. Phys. Fluids 23 (9), 091111.CrossRefGoogle Scholar
di Meglio, J.-M. 1992 Contact angle hysteresis and interacting surface defects. Europhys. Lett. 17 (7), 607.CrossRefGoogle Scholar
Monteux, C. & Lequeux, F. 2011 Packing and sorting colloids at the contact line of a drying drop. Langmuir 27 (6), 29172922.CrossRefGoogle ScholarPubMed
Pahlavan, A.A., Yang, L., Bain, C.D. & Stone, H.A. 2021 Evaporation of binary-mixture liquid droplets: the formation of picoliter pancakelike shapes. Phys. Rev. Lett. 127, 024501.CrossRefGoogle ScholarPubMed
Pham, N.T., McHale, G., Newton, M.I., Carroll, B.J. & Rowan, S.M. 2002 Investigation of deposition of monodisperse particles onto fibers. Langmuir 18 (12), 49794983.CrossRefGoogle Scholar
Picknett, R.G. & Bexon, R. 1977 The evaporation of sessile or pendant drops in still air. J. Colloid Interface Sci. 61 (2), 336350.CrossRefGoogle Scholar
Popov, Y.O. 2005 Evaporative deposition patterns: spatial dimensions of the deposit. Phys. Rev. E 71, 036313.CrossRefGoogle ScholarPubMed
Pradhan, T.K. & Panigrahi, P.K. 2015 Deposition pattern of interacting droplets. Colloids Surf. A 482, 562567.CrossRefGoogle Scholar
Protiere, S., Duprat, C. & Stone, H.A. 2012 Wetting on two parallel fibers: drop to column transitions. Soft Matt. 9, 271276.CrossRefGoogle Scholar
Routh, A.F. 2013 Drying of thin colloidal films. Rep. Prog. Phys. 76 (4), 046603.CrossRefGoogle ScholarPubMed
Sauret, A., Boulogne, F., Soh, B., Dressaire, E. & Stone, H.A. 2015 Wetting morphologies on randomly oriented fibers. Eur. Phys. J. E 38 (6), 62.CrossRefGoogle ScholarPubMed
Sempels, W., De Dier, R., Mizuno, H., Hofkens, J. & Vermant, J. 2013 Auto-production of biosurfactants reverses the coffee ring effect in a bacterial system. Nat. Commun. 4, 1757.CrossRefGoogle Scholar
Sreznevsky, B. 1882 Zh. Russ. Fiz. Khim. Obshchest 14, 420483.Google Scholar
Stauber, J.M., Wilson, S.K., Duffy, B.R. & Sefiane, K. 2014 On the lifetimes of evaporating droplets. J. Fluid Mech. 744, R2.CrossRefGoogle Scholar
Wilson, S.K. & D'Ambrosio, H.-M. 2023 Evaporation of sessile droplets. Annu. Rev. Fluid Mech. 55 (1), 481509.CrossRefGoogle Scholar
Worthington, A.M. 1885 Note on a point in the theory of pendent drops. IV. Lond. Edinb. Dublin Philos. Mag. J. Sci. 19 (116), 4648.CrossRefGoogle Scholar
Wray, A.W., Duffy, B.R. & Wilson, S.K. 2020 Competitive evaporation of multiple sessile droplets. J. Fluid Mech. 884, A45.CrossRefGoogle Scholar
Wray, A.W., Wray, P.S., Duffy, B.R. & Wilson, S.K. 2021 Contact-line deposits from multiple evaporating droplets. Phys. Rev. Fluids 6, 073604.CrossRefGoogle Scholar
Zheng, R. 2009 A study of the evaporative deposition process: pipes and truncated transport dynamics. Eur. Phys. J. E 29 (2), 205218.CrossRefGoogle ScholarPubMed

Corpart et al. Supplementary Movie 1

Movie of the evolution of a drop on a fibre of radius a = 125µm observed in side view. The initial concentration is $c_i = 1. 10^8$ particles/mL and the movie is accelerated 40 times.

Download Corpart et al. Supplementary Movie 1(Video)
Video 5.9 MB

Corpart et al. Supplementary Movie 2

Movie of the evolution of a sessile drop, observed from below, of initial wetted length $R \approx 0.8$ mm. The initial concentration is $c_i = 1. 10^8$ particles/mL and the movie is accelerated 10 times.

Download Corpart et al. Supplementary Movie 2(Video)
Video 8.2 MB