Skip to main content Accessibility help
×
Home
Hostname: page-component-78dcdb465f-bmnx5 Total loading time: 0.411 Render date: 2021-04-16T04:07:40.260Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Asymptotics for the long-time evolution of kurtosis of narrow-band ocean waves

Published online by Cambridge University Press:  26 November 2018

Peter A. E. M. Janssen
Affiliation:
E.C.M.W.F., Shinfield Park, ReadingRG2 9AX, UK
Augustus J. E. M. Janssen
Affiliation:
Department of Mathematics and Computer Science, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
Corresponding
E-mail address:

Abstract

In this paper we highlight that extreme events such as freak waves are a transient phenomenon in keeping with the old fisherman tale that these extreme events seem to appear out of nowhere. Janssen (J. Phys. Oceanogr., vol. 33, 2003, pp. 863–884) obtained an evolution equation for the ensemble average of the excess kurtosis, which is a measure for the deviation from normality and an indicator for nonlinear focusing resulting in extreme events. In the limit of a narrow-band wave train, whose dynamics is governed by the two-dimensional nonlinear Schrödinger (NLS) equation, the excess kurtosis is under certain conditions seen to grow to a maximum after which it decays to zero for large times. This follows from a numerical solution of the problem and also from an analytical solution presented by Fedele (J. Fluid Mech., vol. 782, 2015, pp. 25–36). The analytical solution is not explicit because it involves an integral from initial time to actual time. We therefore study a number of properties of the integral expression in order to better understand some interesting features of the time-dependent excess kurtosis and the generation of extreme events.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below.

References

Agafontsev, D. S. & Zakharov, V. E. 2015 Integrable turbulence and formation of rogue waves. Nonlinearity 28 (8), 2791.CrossRefGoogle Scholar
Akhmediev, N., Eleonskii, V. M. & Kulagin, N. E. 1987 Exact solutions of the first order of nonlinear Schrödinger equation. Theor. Math. Phys. (USSR) 72 (2), 809818.CrossRefGoogle Scholar
Annenkov, S. Y. & Shrira, V. I. 2001 On the predictability of evolution of surface gravity and gravity-capillary waves. Physica D 152–153, 665675.CrossRefGoogle Scholar
Annenkov, S. Y. & Shrira, V. I. 2006 Role of non-resonant interactions in the evolution of nonlinear random water wave fields. J. Fluid Mech. 561, 181207.CrossRefGoogle Scholar
Benjamin, T. B. & Feir, J. E. 1967 The desintegration of wavetrains on deep water. Part 1. Theory. J. Fluid Mech. 27, 417430.CrossRefGoogle Scholar
Cartwright, D. E. & Longuet-Higgins, M. S. 1956 The statistical distribution of the maxima of a random function. Proc. R. Soc. Lond. A 237, 212232.CrossRefGoogle Scholar
Cavaleri, L., Barbariol, F., Benetazzo, A., Bertotti, L., Bidlot, J. R., Janssen, P. & Wedi, N. 2016 The Draupner wave: a fresh look and the emerging view. J. Geophys. Res. C 121 (8), 60616075.CrossRefGoogle Scholar
Crawford, D. R., Lake, B. M., Saffman, P. G. & Yuen, H. C. 1981 Stability of weakly nonlinear deep-water waves in two and three dimensions. J. Fluid Mech. 105, 177191.CrossRefGoogle Scholar
Davidson, R. C. 1972 Methods in Nonlinear Plasma Theory, p. 356. Academic Press.Google Scholar
Dean, R. G. 1990 Freak waves: a possible explanation. In Water Wave Kinematics (ed. Torum, A. & Gudmestad, O. T.), pp. 609612. Kluwer.CrossRefGoogle Scholar
Draper, L. 1965 ‘Freak’ ocean waves. Marine Observer 35, 193195.Google Scholar
Dyachenko, A. I. & Zakharov, V. E. 1994 Is free surface hydrodynamics an integrable system? Phys. Lett. A 190, 144.CrossRefGoogle Scholar
El Koussaifi, R., Tikan, A., Toffoli, A., Randoux, S., Suret, P. & Onorato, M. 2018 Spontaneous emergence of rogue waves in partially coherent waves: a quantitative experimental comparison between hydrodynamics and optics. Phys. Rev. E 97, 012208.CrossRefGoogle Scholar
Fedele, F. 2015 On the kurtosis of deep-water gravity waves. J. Fluid Mech. 782, 2536.CrossRefGoogle Scholar
Fedele, F., Cherneva, Z., Tayfun, M. A. & Guedes Soares, C. 2010 Nonlinear Schrödinger invariants and wave statistics. Phys. Fluids 22 (3), 036601.CrossRefGoogle Scholar
Hasselmann, K. 1962 On the non-linear energy transfer in a gravity-wave spectrum. Part 1. General theory. J. Fluid Mech. 12, 481.CrossRefGoogle Scholar
Janssen, P. 2004 The interaction of Ocean Waves and Wind, Cambridge University Press.CrossRefGoogle Scholar
Janssen, P. A. E. M. 2003 Nonlinear four-wave interactions and freak waves. J. Phys. Oceanogr. 33, 863884.2.0.CO;2>CrossRefGoogle Scholar
Janssen, P. A. E. M.2017 Shallow-water version of the fresh wave warning system. ECMWF Tech. Mem 813.Google Scholar
Janssen, P. A. E. M. & Bidlot, J.-R.2009 On the extension of the freak wave warning system and its verification. ECMWF Tech. Mem. 588.Google Scholar
Krasitskii, V. P. 1994 On reduced equations in the Hamiltonian theory of weakly nonlinear surface waves. J. Fluid Mech. 272, 120.CrossRefGoogle Scholar
Lake, B. M., Yuen, H. C., Rungaldier, H. & Ferguson, W. E. Jr 1977 Nonlinear deep-water waves: theory and experiment. Part 2. Evolution of a continuous wave train. J. Fluid Mech. 83, 4974.CrossRefGoogle Scholar
Lighthill, M. J. 1965 Contributions to the theory of waves in non-linear dispersive systems. J. Inst. Maths Applics. 1, 269306.CrossRefGoogle Scholar
Longuet-Higgins, M. S. 1978 The instabilities of gravity waves of finite amplitude in deep-water. II. Subharmonics. Proc. R. Soc. Lond. A 360, 489505.CrossRefGoogle Scholar
Mori, N. & Janssen, P. A. E. M. 2006 On kurtosis and occurrence probability of fresh waves. J. Phys. Oceanogr. 36, 14711483.CrossRefGoogle Scholar
Mori, N., Onorato, M. & Janssen, P. A. E. M. 2011 On the estimation of the kurtosis in directional sea states for freak wave forecasting. J. Phys. Oceanogr. 41, 14841497.CrossRefGoogle Scholar
Mori, N., Onorato, M., Janssen, P. A. E. M., Osborne, A. R. & Serio, M. 2007 On the extreme statistics of long-crested deep water waves: theory and experiments. J. Geophys. Res. 112, C09011.CrossRefGoogle Scholar
Onorato, M., Osborne, A. R., Serio, M., Cavaleri, L., Brandini, C. & Stansberg, C. T. 2004 Observation of strongly non-Gaussian statistics for random sea surface gravity waves in wave flume experiments. Phys. Rev. E 70, 067302.Google Scholar
Onorato, M., Residori, S. & Baronio, F. 2016 Rogue and Shock Waves in Nonlinear Dispersive Media, Lecture Notes in Physics, vol. 926. Springer.CrossRefGoogle Scholar
Onorato, M., Waseda, T., Toffoli, A., Cavaleri, L., Gramstad, O., Janssen, P. A. E. M., Kinoshita, T., Monbaliu, J., Mori, N., Osborne, A. R., Serio, M., Stansberg, C. T., Tamura, H. & Trulsen, K. 2009 Statistical properties of directional ocean waves: the role of the modulational instability in the formation of extreme events. Phys. Rev. Lett. 102 (1–4), 114502.CrossRefGoogle ScholarPubMed
Osborne, A. R., Onorato, M. & Serio, M. 2000 The nonlinear dynamics of rogue waves and holes in deep water gravity wave trains. Phys. Lett. A 275, 386393.CrossRefGoogle Scholar
Peregrine, D. H. 1983 Water waves, nonlinear Schrödinger equations and their solutions. J. Austral. Math. Soc. B 25, 1643.CrossRefGoogle Scholar
Randoux, S., Walczak, P., Onorato, M. & Suret, P. 2014 Intermittency in integrable turbulence. Phys. Rev. Lett. 113, 113902.CrossRefGoogle ScholarPubMed
Stokes, G. G. 1847 On the theory of oscillatory waves. Trans. Camb. Phil. Soc. 8, 441455.Google Scholar
Suret, P., El Koussaifi, R., Tikan, A., Evain, C., Randoux, S., Szwaj, C. & Bielawski, S. 2016 Single-shot observation of optical rogue waves in integrable turbulence using time microscopy. Nature Commun. 7, 13136.CrossRefGoogle Scholar
Suret, P., Picozzi, A. & Randoux, S. 2011 Wave turbulence in integrable systems: nonlinear propagation of incoherent optical waves in single-mode fibers. Opt. Express 19 (18), 1785217863.CrossRefGoogle Scholar
Walczak, P., Randoux, S. & Suret, P. 2015 Optical Rogue Waves in integrable turbulence. Phys. Rev. Lett. 114, 143903.CrossRefGoogle Scholar
Whitham, G. B. 1974 Linear and Nonlinear Waves, Wiley.Google Scholar
Yuen, H. C. & Lake, B. M. 1982 Nonlinear dynamics of deep water gravity waves. Adv. Appl. Mech. 22, 67229.CrossRefGoogle Scholar
Zakharov, V. E. 1968 Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys. 9, 190194.CrossRefGoogle Scholar
Zakharov, V. E. & Rubenchik, A. M. 1974 Instability of wave guides and solitons in nonlinear media. Sov. Phys. JETP 38, 494500; (Engl. Transl.).Google Scholar
Zakharov, V. E. & Shabat, A. B. 1972 Exact theory of two-dimensional self-focussing and one-dimensional self-modulating waves in nonlinear media. Sov. Phys. JETP 34, 6269; (Engl. Transl.).Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 22
Total number of PDF views: 212 *
View data table for this chart

* Views captured on Cambridge Core between 26th November 2018 - 16th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Asymptotics for the long-time evolution of kurtosis of narrow-band ocean waves
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Asymptotics for the long-time evolution of kurtosis of narrow-band ocean waves
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Asymptotics for the long-time evolution of kurtosis of narrow-band ocean waves
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *