Hostname: page-component-7c8c6479df-5xszh Total loading time: 0 Render date: 2024-03-29T01:45:11.526Z Has data issue: false hasContentIssue false

An inviscid analysis of the Prandtl azimuthal mass transport during swirl-type sloshing

Published online by Cambridge University Press:  27 February 2019

Odd M. Faltinsen*
Affiliation:
Centre for Autonomous Marine Operations and Systems & Department of Marine Technology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
Alexander N. Timokha
Affiliation:
Centre for Autonomous Marine Operations and Systems & Department of Marine Technology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway Institute of Mathematics, National Academy of Sciences of Ukraine, 01004 Kiev, Ukraine
*
Email address for correspondence: odd.faltinsen@ntnu.no

Abstract

An inviscid analytical theory of a slow steady liquid mass rotation during the swirl-type sloshing in a vertical circular cylindrical tank with a fairly deep depth is proposed by utilising the asymptotic steady-state wave solution by Faltinsen et al. (J. Fluid Mech., vol. 804, 2016, pp. 608–645). The tank performs a periodic horizontal motion with the forcing frequency close to the lowest natural sloshing frequency. The azimuthal mass transport (first observed in experiments by Prandtl (Z. Angew. Math. Mech., vol. 29(1/2), 1949, pp. 8–9)) is associated with the summarised effect of a vortical Eulerian-mean flow, which, as we show, is governed by the inviscid Craik–Leibovich equation, and an azimuthal non-Eulerian mean. Suggesting the mass-transport velocity tends to zero when approaching the vertical wall (supported by existing experiments) leads to a unique non-trivial solution of the Craik–Leibovich boundary problem and, thereby, gives an analytical expression for the summarised mass-transport velocity within the framework of the inviscid hydrodynamic model. The analytical solution is validated by comparing it with suitable experimental data.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bouvard, J., Herreman, W. & Moisy, F. 2017 Mean mass transport in an orbitally shaken cylindrical container. Phys. Rev. Fluids 2, 084801.10.1103/PhysRevFluids.2.084801Google Scholar
van den Bremer, T. S. & Breivik, Ø. 2017 Stokes drift. Phil. Trans. R. Soc. Lond. A 376 (2111), A 2018 376 20170104.Google Scholar
Bühler, O. 2009 Waves and Mean Flows. Cambridge University Press.10.1017/CBO9780511605499Google Scholar
Craik, A. D. 1986 Wave Interaction and Fluid Flows. Cambridge University Press.10.1017/CBO9780511569548Google Scholar
Craik, A. D. & Leibovich, S. 1976 A rational model for Langmuir circulations. J. Fluid Mech. 73 (3), 401426.Google Scholar
Ducci, A. & Weheliye, W. H. 2014 Orbitally shaken bioreactors-viscosity effects on flow characteristics. AIChE J. 60 (11), 39513968.10.1002/aic.14608Google Scholar
Faltinsen, O. M., Lukovsky, I. A. & Timokha, A. N. 2016 Resonant sloshing in an upright annular tank. J. Fluid Mech. 804, 608645.10.1017/jfm.2016.539Google Scholar
Faltinsen, O. M. & Timokha, A. N. 2009 Sloshing. Cambridge University Press.Google Scholar
Hutton, R. E. 1964 Fluid-particle motion during rotary sloshing. Trans. ASME J. Appl. Mech. 31 (1), 145153.10.1115/1.3629532Google Scholar
Kochin, N. E., Kibel, I. A. & Roze, N. V. 1965 Theoretical Hydromechanics. Wiley.Google Scholar
Leibovich, S. 1980 On wave-current interaction theories of Langmuir circulations. J. Fluid Mech. 99 (4), 715724.10.1017/S0022112080000857Google Scholar
Moiseev, N. N. 1958 On the theory of nonlinear vibrations of a liquid of finite volume. J. Appl. Math. Mech. 22 (5), 860872.Google Scholar
Prandtl, L. 1949 Erzeugung von Zirkulation beim Schütteln von Gefässen. Z. Angew. Math. Mech. 29 (1/2), 89.10.1002/zamm.19490290106Google Scholar
Reclari, M.2013 Hydrodynamics of orbital shaken bioreactors. Thesis no 5759 (2013), Ècole Polytechnique Federale de Lausanne.Google Scholar
Reclari, M., Dreyer, M., Tissot, S., Obreschkow, D., Wurm, F. M. & Farhat, M. 2014 Surface wave dynamics in orbital shaken cylindrical containers. Phys. Fluids 26, 052104.Google Scholar
Riley, N. 2001 Steady streaming. Annu. Rev. Fluid Mech. 33, 4365.Google Scholar
Royon-Lebeaud, A., Hopfinger, E. J. & Cartellier, A. 2007 Liquid sloshing and wave breaking in circular and square-base cylindrical containers. J. Fluid Mech. 577, 467494.Google Scholar
Supplementary material: File

Faltinsen and Timokha supplementary material

Faltinsen and Timokha supplementary material 1

Download Faltinsen and Timokha supplementary material(File)
File 268.1 KB