Skip to main content Accessibility help
×
Home

Ablative Rayleigh–Taylor instability with strong temperature dependence of the thermal conductivity

  • C. ALMARCHA (a1), P. CLAVIN (a1), L. DUCHEMIN (a1) and J. SANZ (a2)

Abstract

An asymptotic analysis of Rayleigh–Taylor unstable ablation fronts encountered in inertial confinement fusion is performed in the case of a strong temperature dependence of the thermal conductivity. At leading order the nonlinear analysis leads to a free boundary problem which is an extension of the classical Rayleigh–Taylor instability with unity Atwood number and an additional potential flow of negligible density expelled perpendicular to the front. The nonlinear evolution of the front is analysed in two-dimensional geometry by a boundary integral method. The shape of the front develops a curvature singularity within a finite time, as for the Birkhoff–Rott equation for the Kelvin–Helmholtz instability.

Copyright

References

Hide All
Atzeni, S. & Meyer-Ter-Vehn, J. 2004 The Physics of Inertial Fusion, 1st edn. Oxford Science Publications.
Baker, G., Caflisch, R. E. & Siegel, M. 1993 Singularity formation during Rayleigh–Taylor instability. J. Fluid Mech. 252, 5178.
Baker, G. R., Meiron, D. I. & Orszag, S. A. 1980 Vortex simulation of the Rayleigh–Taylor instability. Phys. Fluids 23, 14851490.
Betti, R., Goncharov, V., McCrory, R. L. & Verdon, C. P. 1995 Self-consistent cutoff wave numbers of the Rayleigh–Taylor instability. Phys. Plasmas 2, 38443851.
Betti, R., McCrory, R. L. & Verdon, C. P. 1993 Stability analysis of unsteady ablation fronts. Phys. Rev. Lett. 71, 31313134.
Betti, R. & Sanz, J. 2006 Bubble acceleration in the ablative Rayleigh–Taylor instability. Phys. Rev. Lett. 97, 205002.
Bodner, S. 1974 Rayleigh–Taylor instability and laser-pellet fusion. Phys. Rev. Lett. 33, 761764.
Bychkov, V., Golberg, S. M. & Liberman, M. A. 1994 Self-consistent model of the Rayleigh–Taylor instability in ablatively accelerated laser plasma. Phys. Plasmas 1, 29762986.
Clavin, P. & Almarcha, C. 2005 Ablative Rayleigh–Taylor instability in the limit of an infinitely large density ratio. C. R. Méc. 333, 379388.
Clavin, P. & Masse, L. 2004 Instabilities of ablations fronts in inertial fusion: a comparison with flames. Phys. Plasmas 11, 690705.
Clavin, P. & Williams, F. 2005 Asymptotic spike evolution in Rayleigh–Taylor instability. J. Fluid Mech. 525, 105113.
Duchemin, L., Josserand, C. & Clavin, P. 2005 Asymptotic behavior of the Rayleigh–Taylor instability. Phys. Rev. Lett. 94, 224501.
Goncharov, V., Betti, R., McCrory, R. L., Sorotokin, P. & Verdon, C. P. 1996 Self-consistent stability analysis of ablation fronts with large Froude numbers. Phys. Plasmas 3, 14021414.
Layzer, D. 1955 On the instability of superimposed fluids in a gravitational field. Astrophys. J. 122, 112.
Matsuoka, C. & Nishihara, K. 2006 Erratum: Vortex core dynamics and singularity formations in incompressible Richtmyer-Meshkov instability. Phys. Rev. E 73, 026304 (2006). Phys. Rev. E 74, 049902.
Moore, D. W. 1979 The spontaneous appearance of a singularity in the shape of evolving vortex sheet. Proc. R. Soc. Lond. A 105119.
Pelcé, P. & Clavin, P. 1982 Influence of hydrodynamics and diffusion upon the stability limits of laminar premixed flames. J. Fluid Mech. 124, 219237.
Piriz, A. 2001 Hydrodynamic instability of ablation fronts in inertial confinement fusion. Phys. Plasmas 8, 9971002.
Piriz, A. R., Sanz, J. & Ibañez, L. F. 1997 Rayleigh–Taylor instability of the steady ablation fronts: The discontinuity model revisited. Phys. Plasmas 4, 11171126.
Sanz, J. 1994 Self-consistent analytical model of the Rayleigh–Taylor instability in inertial confinement fusion. Phys. Rev. Lett. 73, 27002703.
Sanz, J. 1996 Self-consistent analytical model of the Rayleigh–Taylor instability in inertial confinement fusion. Phys. Rev. E 53, 40264045.
Sanz, J., Masse, L. & Clavin, P. 2006 The linear Darrieus-Landau and Rayleigh–Taylor instabilities in inertial confinement fusion revisited. Phys. Plasmas 13, 102702.
Sanz, J., Ramírez, J., Ramis, R., Betti, R. & Town, R. P. J. 2002 Nonlinear theory of the ablative Rayleigh–Taylor instability. Phys. Rev. Lett. 89, 195002.
Taylor, G. I. 1950 The instability of liquid surfaces when accelerated in a direction perpendicular to their plan. Proc. R. Soc. Lond. 201, 192196.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Related content

Powered by UNSILO

Ablative Rayleigh–Taylor instability with strong temperature dependence of the thermal conductivity

  • C. ALMARCHA (a1), P. CLAVIN (a1), L. DUCHEMIN (a1) and J. SANZ (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.