Skip to main content Accessibility help

Sex-specific impact of maternal–fetal risk factors on depression and cardiovascular risk 40 years later

  • J. M. Goldstein (a1) (a2) (a3), S. Cherkerzian (a1) (a2), S. L. Buka (a4), G. Fitzmaurice (a5), M. Hornig (a6) (a7), M. Gillman (a8), S. O'Toole (a1) and R. P. Sloan (a9)...


Major depressive disorder (MDD) and cardiovascular disease (CVD) represent leading causes of morbidity and mortality worldwide. We tested the hypothesis that growth restriction and preeclampsia (referred to as fetal risk) are significant predictors of these conditions, with women at higher risk in adulthood. Adult offspring exposed to fetal risk factors and their discordant siblings were from two prenatal cohorts, whose mothers were followed through pregnancy and whom we recruited as adults 40 years later (n = 538; 250 males and 288 females). Subjects were psychiatrically diagnosed and underwent a stress challenge during which parasympathetic regulation was assessed by electrocardiogram, operationalized as high-frequency R-R interval variability (HF-RRV). Linear mixed models and generalized estimating equations were used to examine the relationship of fetal risk on HF-RRV, MDD and comorbidity of low HF-RRV (lowest 25th percentile) and MDD, including interactions with sex and socioeconomic status (SES). Fetal risk was significantly associated with low HF-RRV response (F = 3.64, P = 0.05), particularly among low SES (interaction: F = 4.31, P < 0.04). When stratified by MDD, the fetal risk impact was three times greater among MDD compared with non-MDD subjects (effect size: 0.21 v. 0.06). Females had a significantly higher risk for the comorbidity of MDD and low HF-RRV than males (relative risk (RR) = 1.36, 95% CI: 1.07–1.73), an association only seen among those exposed to fetal risk (RR = 1.38, 95% CI: 1.04–1.83). Findings suggest that these are shared fetal antecedents to the comorbidity of MDD and CVD risk 40 years later, an association stronger in females than in males.


Corresponding author

*Address for correspondence: Dr J. M. Goldstein, Division of Women's Health, Brigham and Women's Hospital, One Brigham Circle, 3rd Floor, 1620 Tremont St., Boston, MA 02120, USA. (Email


Hide All
1. Ustun, TB, Ayuso-Mateos, JL, Chatterji, S, Mathers, C, Murray, CJ. Global burden of depressive disorders in the year 2000. Br J Psychiatry. 2004; 184, 386392.
2. World Health Organization. The Global Burden of Disease: 2004 Update, 2008. World Health Organization: Geneva.
3. Lett, HS, Blumenthal, JA, Babyak, MA, et al. Depression as a risk factor for coronary artery disease: evidence, mechanisms, and treatment. Psychosom Med. 2004; 66, 305315.
4. Penninx, BW, Beekman, AT, Honig, A, et al. Depression and cardiac mortality: results from a community-based longitudinal study. Arch Gen Psychiatry. 2001; 58, 221227.
5. Ferketich, A, Schwartzbaum, J, Frid, D, Moeschberger, M. Depression as an antecedent to heart disease among women and men in the NHANES I study. Arch Intern Med. 2000; 160, 12611268.
6. Mallik, S, Spertus, JA, Reid, KJ, et al. Depressive symptoms after acute myocardial infarction: evidence for highest rates in younger women. Arch Intern Med. 2006; 166, 876883.
7. Vaccarino, V, Johnson, BD, Sheps, DS, et al. Depression, inflammation, and incident cardiovascular disease in women with suspected coronary ischemia: the National Heart, Lung, and Blood Institute-sponsored WISE study. J Am Coll Cardiol. 2007; 50, 20442050.
8. Welberg, LA, Seckl, JR. Prenatal stress, glucocorticoids and the programming of the brain. J Neuroendocrinol. 2001; 13, 113128.
9. Phillips, DI, Jones, A. Fetal programming of autonomic and HPA function: do people who were small babies have enhanced stress responses? J Physiol. 2006; 572(Pt 1), 4550.
10. Mesulam, MM. Patterns in behavioral neuroanatomy: association areas, the limbic system, and hemispheric specialization. In Principles of Behavioral Neurology (ed. Mesulam MM), 1985; pp. 158. F.A. Davis Company: Philadelphia, PA.
11. Goncharuk, VD, Van Heerikhuize, J, Swaab, DF, Buijs, RM. Paraventricular nucleus of the human hypothalamus in primary hypertension: activation of corticotropin-releasing hormone neurons. J Comp Neurol. 2002; 443, 321331.
12. DiGiulio, D, Gervasi, M, Romero, R, et al. Microbial invasion of the amniotic cavity in pregnancies with small-for-gestational-age fetuses. J Perinatal Med. 2010; 38, 495502.
13. Szarka, A, Rigo, J Jr, Lazar, L, Beko, G, Molvarec, A. Circulating cytokines, chemokines and adhesion molecules in normal pregnancy and preeclampsia determined by multiplex suspension array. BMC Immunol. 2010; 11, 5967.
14. Neta, GI, von Ehrenstein, OS, Goldman, LR, et al. Umbilical cord serum cytokine levels and risk of small-for-gestational-age and preterm birth. Am J Epidemiol. 2010; 171, 859867.
15. Tuovinen, S, Raikkonen, K, Kajantie, E, et al. Depressive symptoms in adulthood and intrauterine exposure to pre-eclampsia: the Helsinki Birth Cohort Study. BJOG. 2010; 117, 12361242.
16. Van Lieshout, RJ, Boylan, K. Increased depressive symptoms in female but not male adolescents born at low birth weight in the offspring of a national cohort. Can J Psychiatry. 2010; 55, 422430.
17. Quinkler, M, Stewart, PM. Hypertension and Cortisol–Cortisone Shuttle. J Clin Endocrinol Metab. 2003; 88, 23842392.
18. Barker, DJ. The developmental origins of chronic adult disease. Acta Paediatr Suppl. 2004; 93, 2633.
19. Barker, DJ. Fetal origins of coronary heart disease. BMJ. 1995; 311, 171174.
20. Kessler, RC. Epidemiology of women and depression. J Affect Disord. 2003; 74, 513.
21. Lloyd-Jones, D, Adams, RJ, Brown, TM, et al. Executive summary: heart disease and stroke statistics–2010 update: a report from the American Heart Association. Circulation. 2010; 121, 948954.
22. Naqvi, TZ, Naqvi, SS, Merz, CN. Gender differences in the link between depression and cardiovascular disease. Psychosom Med. 2005; 67(Suppl 1), S15S18.
23. Moller-Leimkuhler, AM. Gender differences in cardiovascular disease and comorbid depression. Dialogues Clin Neurosci. 2007; 9, 7183.
24. Golston, K, Bailllie, AJ. Depression and coronary heart disease: a review of the epidemiological evidence, explanatory mechanisms and management approaches. Clin Psychol Rev. 2008; 28, 288306.
25. Van der Kooy, K, van Hout, H, Marwijk, H, et al. Depression and the risk for cardiovascular diseases: systematic review and meta analysis. Int J Geriatr Psychiatry. 2007; 22, 613626.
26. Gil, K, Radziłłowicz, P, Zdrojewski, T, et al. Relationship between the prevalence of depressive symptoms and metabolic syndrome. Results of the SOPKARD Project. Kardiol Pol. 2006; 64, 464469.
27. Meyer, CM, Armenian, HK, Eaton, WW, Ford, DE. Incident hypertension associated with depression in the Baltimore Epidemiologic Catchment area follow-up study. J Affect Disord. 2004; 83, 127133.
28. Shin, JY, Suls, J, Martin, R. Are cholesterol and depression inversely related? A meta-analysis of the association between two cardiac risk factors. Ann Behav Med. 2008; 36, 3343.
29. Rozanski, A, Blumenthal, JA, Kaplan, J. Impact of psychological factors on the pathogenesis of cardiovascular disease and implications for therapy. Circulation. 1999; 99, 21922217.
30. Ozanne, S, Fernandez-Twinn, D, Hales, C. Fetal growth and adult diseases. Semin Perinatol. 2004; 28, 8187.
31. Gale, C, Martyn, C. Birth weight and later risk of depression in a national birth cohort. Br J Psychiatry. 2004; 184, 2833.
32. Preti, A, Cardascia, L, Zen, T, et al. Obstetric complications in patients with depression – a population-based case–control study. J Affect Disord. 2000; 61, 101106.
33. Kinney, DK, Yurgelun-Todd, DA, Tohen, M, Tramer, S. Pre- and perinatal complications and risk for bipolar disorder: a retrospective study. J Affect Disord. 1998; 50, 117124.
34. Jacobsen, B, Eklund, G, Hamberger, L, et al. Perinatal origin of adult self-destructive behavior. Acta Psychiatr Scand. 1987; 76, 364371.
35. Sacker, A, Done, DJ, Crow, TJ, Golding, J. Antecedents of schizophrenia and affective illness obstetric complications. Br J Psychiatry. 1995; 166, 734741.
36. Räikkönen, K, Pesonen, AK, Heinonen, K, et al. Depression in young adults with very low birth weight: the Helsinki study of very low-birth-weight adults. Arch Gen Psychiatry. 2008; 65, 290296.
37. van Os, J, Jones, P, Lewis, G, Wadsworth, M, Murray, R. Developmental precursors of affective illness in a general population birth cohort. Arch Gen Psychiatry. 1997; 54, 625631.
38. Machon, RA, Mednick, SA, Huttunen, MO. Adult major affective disorder after prenatal exposure to an influenza epidemic. Arch Gen Psychiatry. 1997; 54, 322328.
39. Watson, JB, Mednick, SA, Huttunen, M, Wang, X. Prenatal teratogens and the development of adult mental illness. Dev Psychopathol. 1999; 11, 457466.
40. Brown, AS, Susser, ES, Lin, SP, Neugebauer, R, Gorman, JM. Increased risk of affective disorders in males after second trimester prenatal exposure to the Dutch Hunger Winter of 1944–45. Br J Psychiatry. 1995; 166, 601606.
41. Brown, AS, van Os, J, Driessens, C, Hoek, HW, Susser, ES. Further evidence of relation between prenatal famine and major affective disorder. Am J Psychiatry. 2000; 157, 190195.
42. Phillips, D. Fetal programming of the neuroendocrine response to stress: links between low birth weight and the metabolic syndrome. Endocr Res. 2004; 30, 819826.
43. Daly, B, Scragg, R, Schaaf, D, Metcalf, P. Low birth weight and cardiovascular risk factors in Auckland adolescents: a retrospective cohort study. NZ Med J. 2005; 118, 2434.
44. Labayen, I, Ortega, F, Sjöström, M, Ruiz, J. Early life origins of low-grade inflammation and atherosclerosis risk in children and adolescents. J Pediatr. 2009; 155, 673677.
45. Leeson, C, Kattenhorn, M, Morley, R, Lucas, A, Deanfield, J. Impact of low birth weight and cardiovascular risk factors on endothelial function in early adult life. Circulation. 2001; 103, 12641268.
46. Eriksson, M, Wallander, M, Krakau, I, Wedel, H, Svärdsudd, K. Birth weight and cardiovascular risk factors in a cohort followed until 80 years of age: the study of men born in 1913. J Intern Med. 2004; 255, 236246.
47. Rajaleid, K, Janszky, I, Hallqvist, J. Small birth size, adult overweight, and risk of acute myocardial infraction. Epidemiology. 2011; 22, 138147.
48. Kajantie, E, Feldt, K, Räikkönen, K, et al. Body size at birth predicts hypothalamic–pituitary–adrenal axis response to psychosocial stress at age 60 to 70 years. J Clin Endocrinol Metab. 2007; 92, 40944100.
49. Whitsel, EA, Raghunathan, T, Pearce, RM, et al. RR interval variation, the QT interval index and risk of primary cardiac arrest among patients without clinically recognized heart disease. Eur Heart J. 2001; 22, 165173.
50. Thayer, JF, Lane, RD. The role of vagal function in the risk for cardiovascular disease and mortality. Biol Psychiatry. 2007; 74, 224242.
51. Dekker, JM, Crow, RS, Folsom, AR, et al. Low heart rate variability in a 2-minute rhythm strip predicts risk of coronary heart disease and mortality from several causes: the ARIC Study. Atherosclerosis Risk in Communities. Circulation. 2000; 102, 12391244.
52. Liao, D, Sloan, RP, Cascio, WE, et al. Multiple metabolic syndrome is associated with lower heart rate variability. The Atherosclerosis Risk in Communities Study. Diabetes Care. 1998; 21, 21162122.
53. Tracey, KJ. The inflammatory reflex. Nature. 2002; 420, 853859.
54. Mendonca, G, Heffernan, K, Rossow, L, et al. Sex differences in linear and nonlinear heart rate variability during early recovery from supramaximal exercise. Appl Physiol Nutr Metab. 2010; 35, 439446.
55. Chen, HC, Yang, CC, Kuo, TB, Su, TP, Chou, P. Gender differences in the relationship between depression and cardiac autonomic function among community elderly. Int J Geriatr Psychiatry. 2010; 25, 314322.
56. Susser, E, Buka, S, Schaefer, CA, et al. The Early Determinants of Adult Health Study. J Dev Orig Health Dis. 2011 (in press).
57. Oken, E, Kleinman, KP, Rich-Edwards, J, Gillman, MW. A nearly continuous measure of birth weight for gestational age using a United States national reference. BMC Pediatr. 2003; 3, 6.
58. National High B lood Pressure Edu cation Program Working Group on High Blood Pressure in Pregnancy. Report of the National High Blood Pressure Education Program Working Group on High Blood Pressure in Pregnancy. Am J Obstet Gynecol. 2000; 183, S1S22.
59. First, MB, Spitzer, RL, Gibbon, M, Williams, JBW. Structured Clinical interview for DSM-IV Axis I Disorders – Patient Edition (SCID -I/P, vers. 2.0), 1996. American Psychiatric Press: Washington, DC.
60. Ruan, WJ, Goldstein, RB, Chou, SP, et al. The alcohol use disorder and associated disabilities interview schedule-IV (AUDADIS-IV): reliability of new psychiatric diagnostic modules and risk factors in a general population sample. Drug Alcohol Depend. 2008; 92, 2736.
61. Berntson, GG, Quigley, KS, Lang, JF, Boysen, ST. An approach to artifact identification: application to heart period data. Psychophysiology. 1990; 27, 586598.
62. deBoer, RW, Karemaker, JM, Strackee, J. Comparing spectra of a series of point events, particularly for heart rate variability spectra. IEEE Trans Biomed Eng. 1984; 4, 384387.
63. Harris, FJ. On the use of windows for harmonic analysis with the discrete Fourier transform. Proc IEEE. 1978; 66, 5183.
64. Myrianthopoulos, NC, French, KS. An application of the U. S. bureau of the census socioeconomic index to a large diversified patient population. Soc Sci Med. 1968; 2, 283299.
65. Gilman, SE, Kawachi, I, Fitzmaurice, GM, Buka, SL. Socioeconomic status in childhood and the lifetime risk of major depression. Int J Epidemiol. 2002; 31, 359367.
66. Rose, G, Marmot, M. Social class and coronary heart disease. Br Heart J. 1981; 45, 1319.
67. Salomaa, V, Miettinen, H, Niemelä, M, et al. Relation of socioeconomic position to the case fatality, prognosis and treatment of myocardial infarction events; the FINMONICA MI Register Study. J Epidemiol Community Health. 2001; 55, 475482.
68. Littell, RC, Milliken, GA, Stroup, WW, Wolfinger, RD. SAS System for Mixed Models, 1996. SAS Institute: Cary, NC.
69. Clark, AM, DesMeules, M, Luo, W, Duncan, AS, Wielgosz, A. Socioeconomic status and cardiovascular disease: risks and implications for care. Nat Rev Cardiol. 2009; 6, 712722.
70. Lloyd-Jones, D, Adams, R, Carnethon, M, et al. Heart disease and stroke statistics–2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2009; 119, e21e181.
71. Jones, A, Beda, A, Ward, AM, et al. Size at birth and autonomic function during psychological stress. Hypertension. 2007; 49, 548555.
72. Jones, A, Beda, A, Osmond, C, et al. Sex-specific programming of cardiovascular physiology in children. Eur Heart J. 2008; 29, 21642170.
73. Schlotz, W, Jones, A, Phillips, NM, Godfrey, KM, Phillips, DI. Size at birth and motor activity during stress in children aged 7 to 9 years. Pediatrics. 2007; 120, e1237e1244.
74. Lee, JH, Holsen, LM, Spaeth, SB, et al. Hypoactivation of the stress response circuitry in depression associated with loss of parasympathetic control of the heart: a combined analysis of fMRI and heart rate variability (manuscript resubmitted).
75. Vasiliadis, HM, Gilman, SE, Buka, SL. Fetal growth restriction and the development of major depression. Acta Psychiatr Scand. 2008; 117, 306312.
76. Masuzaki, H, Yamamoto, H, Kenyon, CJ, et al. Transgenic amplification of glucocorticoid action in adipose tissue causes high blood pressure in mice. J Clin Invest. 2003; 112, 8390.
77. Seckl, JR. Glucocorticoid programming of the fetus; adult phenotypes and molecular mechanisms. Mol Cell Endocrinol. 2001; 185, 6171.
78. Bispham, J, Gopalakrishnan, GS, Dandrea, J, et al. Maternal endocrine adaptation throughout pregnancy to nutritional manipulation: consequences for maternal plasma leptin and cortisol and the programming of fetal adipose tissue development. Endocrinology. 2003; 144, 35753585.
79. Schwartz, J, Thornburg, KL. The influence of various physiological challenges on permanent changes to the cardiovascular system. Arch Physiol Biochem. 2003; 111, 37.
80. Kind, KL, Clifton, PM, Grant, PA, et al. Effect of maternal feed restriction during pregnancy on glucose tolerance in the adult guinea pig. Am J Physiol Regul Integr Comp Physiol. 2003; 284, R140R152.
81. Haussmann, MF, Carroll, JA, Weesner, GD, et al. Administration of ACTH to restrained, pregnant sows alters their pigs’ hypothalamic–pituitary–adrenal (HPA) axis. J Anim Sci. 2000; 78, 23992411.
82. Broberg, CS, Giraud, GD, Schultz, JM, et al. Fetal anemia leads to augmented contractile response to hypoxic stress in adulthood. Am J Physiol Regul Integr Comp Physiol. 2003; 285, R649R655.
83. Simmons, RA, Templeton, LJ, Gertz, SJ. Intrauterine growth retardation leads to the development of type 2 diabetes in the rat. Diabetes. 2001; 50, 22792286.
84. Breier, BH, Vickers, MH, Ikenasio, BA, Chan, KY, Wong, WP. Fetal programming of appetite and obesity. Mol Cell Endocrinol. 2001; 185, 7379.
85. Ozanne, SE, Hales, CN. Lifespan: catch-up growth and obesity in male mice. Nature. 2004; 427, 411412.
86. DiPietro, JA, Bornstein, M, Hahn, C, Costigan, K, Achy-Brou, A. Fetal heart rate and variability: stability and prediction to developmental outcomes in early childhood. Child Dev. 2007; 78, 17881798.
87. Grimm, B, Kaehler, C, Schleussner, E, et al. Influence of intrauterine growth restriction on cardiac time intervals evaluated by fetal magnetocardiography. Early Hum Dev. 2003; 74, 111.
88. Dipietro, JA, Irizarry, RA, Hawkins, M, Costigan, KA, Pressman, EK. Cross-correlation of fetal cardiac and somatic activity as an indicator of antenatal neural development. Am J Obstet Gynecol. 2001; 185, 14211426.
89. Prechtl, HF. Continuity and change in early neural development. In Continuity of Neural Functions from Prenatal to Postnatal Life (ed. Prechtl HF), 1984; pp. 115. Lippincott: Philadelphia, PA.
90. de Weerth, C, Buitelaar, J. Physiological stress reactivity in human pregnancy–a review. Neurosci Biobehav Rev. 2005; 29, 295312.
91. Spassov, L, Curzi-Dascalova, L, Clairambault, J, et al. Heart rate and heart rate variability during sleep in small-for-gestational age newborns. Pediatr Res. 1994; 35, 500505.
92. Monk, C, Fifer, WP, Myers, MM, et al. Maternal stress responses and anxiety during pregnancy: effects on fetal heart rate. Dev Psychobiol. 2000; 36, 6777.
93. Arduini, D, Rizzo, G, Rinaldo, D, et al. Effects of Braxton-Hicks contractions on fetal heart rate variations in normal and growth-retarded fetuses. Gynecol Obstet Invest. 1994; 38, 177182.
94. Lee, JM, Park, KS, Hwang, JH, Park, MI, Yum, MK. Chaotic and periodic heart rate dynamics in uncomplicated intrauterine growth restricted fetuses. Early Hum Dev. 1998; 53, 121128.
95. Lewis, M, Wilson, CD, Ban, P, Baumel, MH. An exploratory study of resting cardiac rate and variability from the last trimester of prenatal life through the first year postpartum life. Child Dev. 1970; 41, 799811.
96. Thomas, PW, Haslum, MN, MacGillivray, I, Golding, MJ. Does fetal heart rate predict subsequent heart rate in childhood. Early Hum Dev. 1989; 19, 147152.
97. Meyer, K, Zhang, L. Fetal programming of cardiac function and disease. Reprod Sci. 2007; 14, 209216.
98. Zhang, L. Prenatal hypoxia and cardiac programming. J Soc Gynecol Investig. 2005; 12, 213.
99. Phillips, KA, Vaillant, GE, Schnurr, P. Some physiologic antecedents of adult mental health. Am J Psychiatry. 1987; 144, 10091013.
100. Sherwood, A, Girdler, SS, Bragdon, EE, et al. Ten-year stability of cardiovascular responses to laboratory stressors. Psychophysiology. 1997; 34, 185191.
101. Dierckx, B, Tulen, J, Tharner, A, et al. Low autonomic arousal as vulnerability to externalising behaviour in infants with hostile mothers. Psychiatry Res. 2011; 185, 171175.
102. Kagan, J. Temperament and the reactions to unfamiliarity. Child Dev. 1997; 68, 139143.
103. Calkins, SD. Cardiac vagal tone indices of temperamental reactivity and behavioral regulation in young children. Dev Psychobiol. 1997; 31, 125135.
104. Bubier, J, Drabick, D, Breiner, T. Autonomic functioning moderates the relations between contextual factors and externalizing behaviors among inner-city children. J Fam Psychol. 2009; 23, 500510.
105. Burgess, K, Marshall, P, Rubin, K, Fox, N. Infant attachment and temperament as predictors of subsequent externalizing problems and cardiac physiology. J Child Psychol Psyc. 2003; 44, 819831.
106. Raine, A, Venables, PH, Williams, M. High autonomic arousal and electrodermal orienting at age 15 years as protective factors against criminal behavior at age 29 years. Am J Psychiatry. 1995; 152, 15951600.
107. Gillum, RF, Taylor, HL, Anderson, J, Blackburn, H. Longitudinal study (32 years) of exercise tolerance, breathing response, blood pressure, and blood lipids in young men. Arteriosclerosis. 1981; 1, 455462.
108. Kim, JR, Kiefe, CI, Liu, K, et al. Heart rate and subsequent blood pressure in young adults: the CARDIA study. Hypertension. 1999; 33, 640646.
109. Kessler, RC, McGonagle, KA, Swartz, M, Blazer, DG, Nelson, CB. Sex and depression in the National Comorbidity Survey. I: Lifetime prevalence, chronicity and recurrence. J Affect Disord. 1993; 29, 8596.
110. Goldstein, JM, Seidman, LJ, O'Brien, LM, et al. Impact of normal sexual dimorphisms on sex differences in structural brain abnormalities in schizophrenia assessed by magnetic resonance imaging. Arch Gen Psychiatry. 2002; 59, 154164.
111. Goldstein, JM. Sex, hormones and affective arousal circuitry dysfunction in schizophrenia. Horm Behav. 2006; 50, 612622.
112. Anastario, M, Salafia, CM, Fitzmaurice, G, Goldstein, JM. Impact of fetal versus perinatal hypoxia on sex differences in childhood outcomes: developmental timing matters. Soc Psychiatry Psychiatr Epidemiol. Epub 17 February 2011.


Sex-specific impact of maternal–fetal risk factors on depression and cardiovascular risk 40 years later

  • J. M. Goldstein (a1) (a2) (a3), S. Cherkerzian (a1) (a2), S. L. Buka (a4), G. Fitzmaurice (a5), M. Hornig (a6) (a7), M. Gillman (a8), S. O'Toole (a1) and R. P. Sloan (a9)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed