Skip to main content Accessibility help

Rapid PCR identification of Prevotella copri in an Australian cohort of pregnant women

  • Lawrence Gray (a1) (a2), Kyoko Hasebe (a1), Martin O’Hely (a1) (a3), Anne-Louise Ponsonby (a3) (a4), Peter Vuillermin (a1) (a2) (a3), Fiona Collier (a1) (a2) (a3) and the BIS Investigator Group (a1) (a2) (a3) (a4)...


Gut bacteria from the genus Prevotella are found in high abundance in faeces of non-industrialised communities but low abundance in industrialised, Westernised communities. Prevotella copri is one of the principal Prevotella species within the human gut. As it has been associated with developmental health and disease states, we sought to (i) develop a real-time polymerase chain reaction (PCR) to rapidly determine P. copri abundance and (ii) investigate its abundance in a large group of Australian pregnant mothers.

The Barwon Infant Study is a pre-birth cohort study (n = 1074). Faecal samples were collected from mothers at 36 weeks gestation. Primers with a probe specific to the V3 region of P. copri 16S rRNA gene were designed and optimised for real-time PCR. Universal 16S rRNA gene primers amplified pan-bacterial DNA in parallel. Relative abundance of P. copri was calculated using a 2Ct method.

Relative abundance of P. copri by PCR was observed in 165/605 (27.3%) women. The distribution was distinctly bimodal, defining women with substantial (n = 115/165, 69.7%) versus very low P. copri expression (n = 50/165, 30.3%). In addition, abundance of P. copri by PCR correlated with 16S rRNA gene MiSeq sequencing data (r2 = 0.67, P < 0.0001, n = 61).

We have developed a rapid and cost-effective technique for identifying the relative abundance of P. copri using real-time PCR. The expression of P. copri was evident in only a quarter of the mothers, and either at substantial or very low levels. PCR detection of P. copri may facilitate assessment of this species in large, longitudinal studies across multiple populations and in various clinical settings.


Corresponding author

Address for correspondence: Dr Fiona Collier, Email:


Hide All
1.Flandroy, L, Poutahidis, T, Berg, G, et al.The impact of human activities and lifestyles on the interlinked microbiota and health of humans and of ecosystems. Sci Total Environ. 2018; 627, 10181038.
2.Parajuli, A, Gronroos, M, Siter, N, et al.Urbanization reduces transfer of diverse environmental microbiota indoors. Front Microbiol. 2018; 9, 84.
3.Fujimura, KE, Slusher, NA, Cabana, MD, Lynch, SV. Role of the gut microbiota in defining human health. Expert Rev Anti Infect Ther. 2010; 8(4), 435454.
4.Gray, LE, O’Hely, M, Ranganathan, S, Sly, PD, Vuillermin, P. The maternal diet, gut bacteria, and bacterial metabolites during pregnancy influence offspring asthma. Front Immunol. 2017; 8, 365.
5.Arumugam, M, Raes, J, Pelletier, E, et al.Enterotypes of the human gut microbiome. Nature. 2011; 473(7346), 174180.
6.Costea, PI, Hildebrand, F, Arumugam, M, et al.Enterotypes in the landscape of gut microbial community composition. Nat Microbiol. 2018; 3(1), 816.
7.Wu, GD, Chen, J, Hoffmann, C, et al.Linking long-term dietary patterns with gut microbial enterotypes. Science 2011; 334(6052), 105108.
8.Yatsunenko, T, Rey, FE, Manary, MJ, et al.Human gut microbiome viewed across age and geography. Nature. 2012; 486(7402), 222227.
9.De Filippo, C, Cavalieri, D, Di Paola, M, et al.Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA. 2010; 107(33), 1469114696.
10.Schnorr, SL, Candela, M, Rampelli, S, et al.Gut microbiome of the Hadza hunter-gatherers. Nat Commun. 2014; 5, 3654.
11.Martinez, I, Stegen, JC, Maldonado-Gomez, MX, et al.The gut microbiota of rural papua new guineans: composition, diversity patterns, and ecological processes. Cell Rep. 2015; 11(4), 527538.
12.Lahti, L, Salojarvi, J, Salonen, A, Scheffer, M, de Vos, WM. Tipping elements in the human intestinal ecosystem. Nat Commun. 2014; 5, 4344.
13.Ley, RE. Gut microbiota in 2015: prevotella in the gut: choose carefully. Nat Rev Gastroenterol Hepatol. 2016; 13(2), 6970.
14.Zhu, A, Sunagawa, S, Mende, DR, Bork, P. Inter-individual differences in the gene content of human gut bacterial species. Genome Biol. 2015; 16, 82.
15.De Vadder, F, Kovatcheva-Datchary, P, Zitoun, C, Duchampt, A, Backhed, F, Mithieux, G. Microbiota-produced succinate improves glucose homeostasis via intestinal gluconeogenesis. Cell Metab. 2016; 24(1), 151157.
16.Mahdavinia, M, Rasmussen, HE, Botha, M, et al.Effects of diet on the childhood gut microbiome and its implications for atopic dermatitis. J Allergy Clin Immunol. 2018; 143(4), 16361637e.5.
17.Scher, JU, Sczesnak, A, Longman, RS, et al.Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. eLife. 2013; 2, e01202.
18.Dillon, SM, Lee, EJ, Kotter, CV, et al.Gut dendritic cell activation links an altered colonic microbiome to mucosal and systemic T-cell activation in untreated HIV-1 infection. Mucosal Immunol. 2016; 9(1), 2437.
19.Kristensen, NB, Bryrup, T, Allin, KH, Nielsen, T, Hansen, TH, Pedersen, O. Alterations in fecal microbiota composition by probiotic supplementation in healthy adults: a systematic review of randomized controlled trials. Genome Med. 2016; 8(1), 52.
20.Pedersen, HK, Gudmundsdottir, V, Nielsen, HB, et al.Human gut microbes impact host serum metabolome and insulin sensitivity. Nature. 2016; 535(7612), 376381.
21.Vuillermin, P, Saffery, R, Allen, KJ, et al.Cohort profile: the Barwon infant study. Int J Epidemiol. 2015; 44(4), 11481160.
22.(NCBI) NCfBI. Microbial Nucleotide BLAST Tool [Available from:
23.Livak, KJ, Schmittgen, TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25(4), 402408.
24.Maurin, M. Real-time PCR as a diagnostic tool for bacterial diseases. Expert Rev Mol Diagn. 2012; 12(7), 731754.
25.Sontakke, S, Cadenas, MB, Maggi, RG, Diniz, PP, Breitschwerdt, EB. Use of broad range16S rDNA PCR in clinical microbiology. J Microbiol Methods. 2009; 76(3), 217225.
26.Nicol, MP, Wilkinson, RJ. The clinical consequences of strain diversity in Mycobacterium tuberculosis. Trans R Soc Trop Med Hyg. 2008; 102(10), 955965.
27.De Filippis, F, Pasolli, E, Tett, A, et al.Distinct genetic and functional traits of human intestinal Prevotella copri Strains are associated with different habitual diets. Cell Host Microbe. 2019; 25(3), 444453 e3.
28.Sonnenburg, ED, Smits, SA, Tikhonov, M, Higginbottom, SK, Wingreen, NS, Sonnenburg, JL. Diet-induced extinctions in the gut microbiota compound over generations. Nature 2016; 529(7585), 212215.
29.Yassour, M, Vatanen, T, Siljander, H, et al.Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability. Sci Transl Med. 2016; 8(343), 343ra81.
30.VanderWeele, TJ. Principles of confounder selection. Eur J Epidemiol. 2019; 34(3), 211219.
31.Ponsonby, A-L, Dwyer, T. Biomedicine must look beyond P values. Nature 2014; 507, 169.
32.Schmidt, TSB, Raes, J, Bork, P. The human gut microbiome: from association to modulation. Cell. 2018; 172(6), 11981215.
33.Kozich, JJ, Westcott, SL, Baxter, NT, Highlander, SK, Schloss, PD. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol. 2013; 79(17), 51125120.
34.Edgar, RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013; 10(10), 996998.
35.Schloss, PD, Westcott, SL, Ryabin, T, et al.Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009; 75(23), 75377541.
36.McMurdie, PJ, Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 2013; 8(4), e61217.
37.R Core Team. R: A Language and Environment for Statistical Computing, 2018. R Foundation for Statistical Computing, Vienna. Available from:


Type Description Title
Supplementary materials

Gray et al. supplementary material
Gray et al. supplementary material 1

 Unknown (132 KB)
132 KB
Supplementary materials

Gray et al. supplementary material
Gray et al. supplementary material 2

 Word (81 KB)
81 KB

Rapid PCR identification of Prevotella copri in an Australian cohort of pregnant women

  • Lawrence Gray (a1) (a2), Kyoko Hasebe (a1), Martin O’Hely (a1) (a3), Anne-Louise Ponsonby (a3) (a4), Peter Vuillermin (a1) (a2) (a3), Fiona Collier (a1) (a2) (a3) and the BIS Investigator Group (a1) (a2) (a3) (a4)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed