Skip to main content Accessibility help

Newborn electroencephalographic correlates of maternal prenatal depressive symptoms

  • H. C. Gustafsson (a1), P. G. Grieve (a2) (a3), E. A. Werner (a4), P. Desai (a4) and C. Monk (a4) (a5)...


Maternal perinatal depression exerts pervasive effects on the developing brain, as evidenced by electroencephalographic (EEG) patterns that differ between children of women who do and do not meet DSM or ICD diagnostic criteria. However, little research has examined if the same EEG pattern of right-frontal alpha asymmetry exists in newborns and thus originates in utero independent of postnatal influences, and if depressive symptoms are associated with this neural signature. Utilizing 125-lead EEG (n=18), this study considered clinician-rated maternal prenatal depressive symptoms in relation to newborn EEG. Maternal depressive symptomatology was associated with greater relative right-frontal alpha asymmetry during quiet sleep. These results suggest that even subclinical levels of maternal depression may influence infant brain development, and further support the role of the prenatal environment in shaping children’s future neurobehavioral trajectories.


Corresponding author

*Address for correspondence: H. C. Gustafsson, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Multnomah Pavilion, Suite 1505, Portland, OR 97239, USA. E-mail:


Hide All
1. Bennett, HA, Einarson, A, Taddio, A, Koren, G, Einarson, TR. Prevalence of depression during pregnancy: systematic review. Obstet Gynecol. 2004; 103, 698709.
2. Marcus, SM, Flynn, HA, Blow, FC, Barry, KL. Depressive symptoms among pregnant women screened in obstetrics settings. J Women’s Health. 2003; 12, 373380.
3. Field, T. Prenatal depression effects on early development: a review. Infant Behav Dev. 2011; 34, 114.
4. Glover, V. Prenatal stress and its effects on the fetus and the child: possible underlying biological mechanisms. In Perinatal Programming of Neurodevelopment (ed. Antonelli MC), 2015; pp. 269–283. Springer: New York, NY.
5. Diego, MA, Field, T, Hernandez-Reif, M. Prepartum, postpartum and chronic depression effects on neonatal behavior. Infant Behav Dev. 2005; 28, 155164.
6. Field, T, Diego, M, Hernandez-Reif, M. Prenatal depression effects on the fetus and newborn: a review. Infant Behav Dev. 2006; 29, 445455.
7. Allen, JJ, Kline, JP. Frontal EEG asymmetry, emotion, and psychopathology: the first, and the next 25 years. Biol Psychol. 2004; 67, 15.
8. Coan, JA, Allen, JJ. Frontal EEG asymmetry as a moderator and mediator of emotion. Biol Psychol. 2004; 67, 750.
9. Davidson, RJ. Anterior cerebral asymmetry and the nature of emotion. Brain Cogn. 1992; 20, 125151.
10. Campbell, SB, Morgan-Lopez, AA, Cox, MJ, McLoyd, VC. A latent class analysis of maternal depressive symptoms over 12 years and offspring adjustment in adolescence. J Abnorm Psychol. 2009; 118, 479493.
11. McCarty, CA, McMahon, RJ, Conduct Problems Prevention Research Group. Mediators of the relation between maternal depressive symptoms and child internalizing and disruptive behavior disorders. J Fam Psychol. 2003; 17, 545556.
12. Lusby, CM, Goodman, SH, Bell, MA, Newport, DJ. Electroencephalogram patterns in infants of depressed mothers. Dev Psychobiol. 2014; 56, 459473.
13. Murray, L. The impact of postnatal depression on infant development. J Child Psychol Psychiatry. 1992; 33, 543561.
14. Werner, EA, Gustafsson, HC, Lee, S, et al. PREPP: postpartum depression prevention through the mother-infant dyad. Arch Womens Ment Health. 2016; 19, 229242.
15. Cooper, PJ, Murray, L, Hooper, R, West, A. The development and validation of a predictive index for postpartum depression. Psychol Med. 1996; 26, 627634.
16. Williams, JB. A structured interview guide for the Hamilton Depression Rating Scale. Arch Gen Psychiatry. 1988; 45, 742747.
17. Welch, MG, Myers, MM, Grieve, PG, et al. Electroencephalographic activity of preterm infants is increased by family nurture intervention: a randomized controlled trial in the NICU. Clin Neurophysiol. 2014; 125, 675684.
18. Grieve, PG, Isler, JR, Izraelit, A, et al. EEG functional connectivity in term age extremely low birth weight infants. Clin Neurophysiol. 2008; 119, 27122720.
19. Harper, RM, Schechtman, VL, Kluge, KA. Machine classification of infant sleep state using cardiorespiratory measures. Electroencephalogr Clin Neurophysiol. 1987; 67, 379387.
20. van Laar, J, Peters, C, Vullings, R, Houterman, S, Oei, S. Power spectrum analysis of fetal heart rate variability at near term and post term gestation during active sleep and quiet sleep. Early Hum Dev. 2009; 85, 795798.
21. Isler, JR, Thai, T, Myers, MM, Fifer, WP. An automated method for coding sleep states in human infants based on respiratory rate variability. Dev Psychobiol. 2016; 58, 11081115.
22. Werth, J, Long, X, Zwartkruis-Pelgrim, E, et al. Unobtrusive assessment of neonatal sleep state based on heart rate variability retrieved from electrocardiography used for regular patient monitoring. Early Hum Dev. 2017; 113, 104113.
23. Diego, MA, Jones, NA, Field, T. EEG in 1-week, 1-month and 3-month-old infants of depressed and non-depressed mothers. Biol Psychol. 2010; 83, 714.
24. Dawson, G, Frey, K, Panagiotides, H, et al. Infants of depressed mothers exhibit atypical frontal electrical brain activity during interactions with mother and with a familiar, nondepressed adult. Child Dev. 1999; 70, 10581066.
25. Davidson, RJ. What does the prefrontal cortex ‘do’ in affect: perspectives on frontal EEG asymmetry research. Biol Psychol. 2004; 67, 219234.



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed