Skip to main content Accessibility help
×
Home

Impact of maternal hyperlipidic hypercholesterolaemic diet on male reproductive organs and testosterone concentration in rabbits

  • C. Dupont (a1) (a2) (a3) (a4), D. Ralliard-Rousseau (a1) (a2), A. Tarrade (a1) (a2) (a5), C. Faure (a3) (a4), M. Dahirel (a1) (a2) (a5), B. Sion (a6) (a7), F. Brugnon (a8) (a9), R. Levy (a3) (a4) and P. Chavatte-Palmer (a1) (a2) (a5)...

Abstract

The concept of Developmental Origins of Health and Disease initially stemmed from the developmental programming of metabolic diseases. Reproductive functions and fertility in adulthood may also be programmed during foetal development. We studied the impact of dietary-induced maternal hyperlipidaemia and hypercholesterolaemia (HH), administered at 10 weeks of age and throughout the gestation and lactation, on male reproductive functions of rabbit offspring. Male rabbits born to HH dams and fed a control diet had significantly lighter testes and epididymes compared with rabbits born to control dams at adulthood. No significant changes in sperm concentration, sperm DNA integrity and sperm membrane composition were observed, but serum-free testosterone concentrations were decreased in HH males. This study confirms the importance of maternal metabolic status for the development of male reproductive organs.

Copyright

Corresponding author

*Address for correspondence: P. Chavatte-Palmer, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en Josas, France. (Email pascale.chavatte@jouy.inra.fr)

References

Hide All
1. Hanson, MA, Gluckman, PD. Developmental origins of health and disease: new insights. Basic Clin Pharmacol Toxicol. 2008; 102, 9093.
2. Dupont, C, Cordier, AG, Junien, C, et al. Maternal environment and the reproductive function of the offspring. Theriogenology. 2012; 78, 14051414.
3. Gluckman, PD, Hanson, MA. Living with the past: evolution, development, and patterns of disease. Science. 2004; 305, 17331736.
4. Francois, I, de Zegher, F, Spiessens, C, D’Hooghe, T, Vanderschueren, D. Low birth weight and subsequent male subfertility. Pediatr Res. 1997; 42, 899901.
5. Vanbillemont, G, Lapauw, B, Bogaert, V, et al. Birth weight in relation to sex steroid status and body composition in young healthy male siblings. J Clin Endocrinol Metab. 2010; 95, 15871594.
6. Alejandro, B, Perez, R, Pedrana, G, et al. Low maternal nutrition during pregnancy reduces the number of sertoli cells in the newborn lamb. Reprod Fertil Dev. 2002; 14, 333337.
7. Kotsampasi, B, Balaskas, C, Papadomichelakis, G, Chadio, SE. Reduced sertoli cell number and altered pituitary responsiveness in male lambs undernourished in utero. Anim Reprod Sci. 2009; 114, 135147.
8. Rae, MT, Kyle, CE, Miller, DW, et al. The effects of undernutrition, in utero, on reproductive function in adult male and female sheep. Anim Reprod Sci. 2002; 72, 6371.
9. Da Silva, P, Aitken, RP, Rhind, SM, Racey, PA, Wallace, JM. Influence of placentally mediated fetal growth restriction on the onset of puberty in male and female lambs. Reproduction. 2001; 122, 375383.
10. Christante, CM, Taboga, SR, Pinto-Fochi, ME, Goes, RM. Maternal obesity disturbs the postnatal development of gonocytes in the rat without impairment of testis structure at prepubertal age. Reproduction. 2013; 146, 549558.
11. Fischer, B, Chavatte-Palmer, P, Viebahn, C, Navarrete Santos, A, Duranthon, V. Rabbit as a reproductive model for human health. Reproduction. 2012; 144, 110.
12. Cordier, AG, Leveille, P, Dupont, C, et al. Dietary lipid and cholesterol induce ovarian dysfunction and abnormal LH response to stimulation in rabbits. PLoS One. 2013; 8, e63101.
13. Picone, O, Laigre, P, Fortun-Lamothe, L, et al. Hyperlipidic hypercholesterolemic diet in prepubertal rabbits affects gene expression in the embryo, restricts fetal growth and increases offspring susceptibility to obesity. Theriogenology. 2011; 75, 287299.
14. Montoudis, A, Simoneau, L, Lafond, J. Influence of a maternal cholesterol-enriched diet on [1-14C]-linoleic acid and L-[4, 5-3H]-leucine entry in plasma of rabbit offspring. Life Sci. 2004; 74, 17511762.
15. Palinski, W, D’Armiento, FP, Witztum, JL, et al. Maternal hypercholesterolemia and treatment during pregnancy influence the long-term progression of atherosclerosis in offspring of rabbits. Circ Res. 2001; 89, 991996.
16. Marseille-Tremblay, C, Gravel, A, Lafond, J, Mounier, C. Effect of an enriched cholesterol diet during gestation on fatty acid synthase, HMG-CoA reductase and SREBP-1/2 expressions in rabbits. Life Sci. 2007; 81, 772778.
17. Gondos, B, Conner, LA. Ultrastructure of developing germ cells in the fetal rabbit testis. Am J Anat. 1973; 136, 2342.
18. Jost, A, Perlman, S, Magre, S. The initial stages of testicular differentiation in the rabbit fetus. Arch Anat Microsc Morphol Exp. 1985; 74, 6975.
19. Fortun-Lamothe, L, Lamboley-Gaüzère, B, Bannelier, C. Prediction of body composition in rabbit females using total body electrical conductivity (TOBEC). Livest Prod Sci. 2002; 78, 133142.
20. Kumar, N, Sood, S, Arora, B, Singh, M, Beena, . Effect of duration of fluoride exposure on the reproductive system in male rabbits. J Hum Reprod Sci. 2010; 3, 148152.
21. Grizard, G, Sion, B, Bauchart, D, Boucher, D. Separation and quantification of cholesterol and major phospholipid classes in human semen by high-performance liquid chromatography and light-scattering detection. J Chromatogr B Biomed Sci Appl. 2000; 740, 101107.
22. Dupont, C, Faure, C, Sermondade, N, et al. Obesity leads to higher risk of sperm DNA damage in infertile patients. Asian J Androl. 2013; 15, 622625.
23. Hue-Beauvais, C, Chavatte-Palmer, P, Aujean, E, et al. An obesogenic diet started before puberty leads to abnormal mammary gland development during pregnancy in the rabbit. Dev Dyn. 2011; 240, 347356.
24. Sun, B, Purcell, RH, Terrillion, CE, et al. Maternal high-fat diet during gestation or suckling differentially affects offspring leptin sensitivity and obesity. Diabetes. 2012; 61, 28332841.
25. Sharpe, RM, McKinnell, C, Kivlin, C, Fisher, JS. Proliferation and functional maturation of sertoli cells, and their relevance to disorders of testis function in adulthood. Reproduction. 2003; 125, 769784.
26. Chavarro, JE, Toth, TL, Wright, DL, Meeker, JD, Hauser, R. Body mass index in relation to semen quality, sperm DNA integrity, and serum reproductive hormone levels among men attending an infertility clinic. Fertil Steril. 2010; 93, 22222231.
27. Furukawa, S, Fujita, T, Shimabukuro, M, et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest. 2004; 114, 17521761.
28. Bakos, HW, Mitchell, M, Setchell, BP, Lane, M. The effect of paternal diet-induced obesity on sperm function and fertilization in a mouse model. Int J Androl. 2011; 34, 402410.
29. Sakkas, D, Alvarez, JG. Sperm DNA fragmentation: mechanisms of origin, impact on reproductive outcome, and analysis. Fertil Steril. 2010; 93, 10271036.
30. Fullston, T, Ohlsson Teague, EM, Palmer, NO, et al. Paternal obesity initiates metabolic disturbances in two generations of mice with incomplete penetrance to the F2 generation and alters the transcriptional profile of testis and sperm microRNA content. FASEB J. 2013; 10, 42264243.
31. Jenkins, TG, Carrell, DT. The paternal epigenome and embryogenesis: poising mechanisms for development. Asian J Androl. 2011; 13, 7680.

Keywords

Impact of maternal hyperlipidic hypercholesterolaemic diet on male reproductive organs and testosterone concentration in rabbits

  • C. Dupont (a1) (a2) (a3) (a4), D. Ralliard-Rousseau (a1) (a2), A. Tarrade (a1) (a2) (a5), C. Faure (a3) (a4), M. Dahirel (a1) (a2) (a5), B. Sion (a6) (a7), F. Brugnon (a8) (a9), R. Levy (a3) (a4) and P. Chavatte-Palmer (a1) (a2) (a5)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed