Skip to main content Accessibility help

Exposures influencing total IgA level in colostrum

  • D. Munblit (a1) (a2), S. Sheth (a1), P. Abrol (a1), M. Treneva (a2) (a3), D. G. Peroni (a2) (a4), L.-Y. Chow (a1), A. L. Boner (a5), A. Pampura (a2) (a3), J. O. Warner (a1) (a2) and R. J. Boyle (a1) (a2)...


Immunoglobulin A (IgA) is a predominant immunoglobulin present in human breast milk and is known to play an important role in infant gut immunity maturation. Breast milk composition varies between populations, but the environmental and maternal factors responsible for these variations are still unclear. We examined the relationship between different exposures and levels of IgA in colostrum. The objective of this study was to examine whether exposures analysed influence levels of IgA in colostrum. The present study used 294 colostrum samples from the MecMilk International cohort, collected from women residing in London, Moscow and Verona. Samples were analysed in automated Abbott Architect Analyser. We found an inverse correlation between time postpartum and colostrum total IgA level (r=−0.49, P<0.001). Adjusting for maternal parity, smoking, fresh fruit and fish consumption and allergen sensitization, multiple regression model showed that IgA levels were influenced by colostrum collection time (P<0.0001) and country of collection (P<0.01). Mode of delivery influence did not appear to be significant in univariate comparisons, once adjusted for the above maternal characteristics it showed a significant influence on total IgA (P=0.01). We conclude that the concentration of IgA in colostrum drops rapidly after birth and future studies should always consider this factor in analysis. IgA concentration varied significantly between countries, with the highest level detected in Moscow and lowest in Verona. Mode of delivery effect should be confirmed on larger cohorts. Further work is needed to determine ways to correct for IgA decline over time in colostrum, and to find the cause of variations in IgA levels between the countries.


Corresponding author

*Address for correspondence: Dr R. J. Boyle, Wright Fleming Building, Norfolk Place, London, W2 1PG, UK. (Email


Hide All

These authors contributed equally to this work.



Hide All
1. Ip, S, Chung, M, Raman, G, et al. Breastfeeding and maternal and infant health outcomes in developed countries. Evid Rep Technol Assess. 2007; 1186.
2. Matheson, MC, Allen, KJ, Tang, ML. Understanding the evidence for and against the role of breastfeeding in allergy prevention. Clin Exp Allergy. 2012; 42, 827851.
3. Lawrence, RM, Pane, CA. Human breast milk: current concepts of immunology and infectious diseases. Curr Probl Pediatr Adolesc Health Care. 2007; 37, 736.
4. Patki, S, Kadam, S, Chandra, V, Bhonde, R. Human breast milk is a rich source of multipotent mesenchymal stem cells. Hum Cell. 2010; 23, 3540.
5. D’Alessandro, A, Scaloni, A, Zolla, L. Human milk proteins: an interactomics and updated functional overview. J Proteome Res. 2010; 9, 33393373.
6. WHO. Infant and Young Child Feeding, 2009. World Health Organization: Geneva.
7. Darragh, A, Lönnerdal, B. Human milk. In Encyclopedia of Dairy Sciences (2nd edn; eds. Fuquay JW, Fox PF, McSweeney PLS), 2011; pp. 581590. Academic Press: Oxford.
8. Kobata, R, Tsukahara, H, Ohshima, Y, et al. High levels of growth factors in human breast milk. Early Hum Dev. 2008; 84, 6769.
9. Pang, WW, Hartmann, PE. Initiation of human lactation: secretory differentiation and secretory activation. J Mammary Gland Biol Neoplasia. 2007; 12, 211221.
10. Playford, RJ, Macdonald, CE, Johnson, WS. Colostrum and milk-derived peptide growth factors for the treatment of gastrointestinal disorders. Am J Clin Nutr. 2000; 72, 514.
11. Garofalo, R, Chheda, S, Mei, F, et al. Interleukin-10 in human milk. Pediatr Res. 1995; 37(4 Pt 1), 444449.
12. Lonnerdal, B. Nutritional and physiologic significance of human milk proteins. Am J Clin Nutr. 2003; 77, 1537S1543S.
13. Chowanadisai, W, Lonnerdal, B. Alpha(1)-antitrypsin and antichymotrypsin in human milk: origin, concentrations, and stability. Am J Clin Nutr. 2002; 76, 828833.
14. Hurley, WL, Theil, PK. Perspectives on immunoglobulins in colostrum and milk. Nutrients. 2011; 3, 442474.
15. Bachour, P, Yafawi, R, Jaber, F, Choueiri, E, Abdel-Razzak, Z. Effects of smoking, mother’s age, body mass index, and parity number on lipid, protein, and secretory immunoglobulin A concentrations of human milk. Breastfeed Med. 2012; 7, 179188.
16. Orivuori, L, Loss, G, Roduit, C, et al. Soluble immunoglobulin A in breast milk is inversely associated with atopic dermatitis at early age: the PASTURE cohort study. Clin Exp Allergy. 2014; 44, 102112.
17. Tomicic, S, Johansson, G, Voor, T, et al.. Breast milk cytokine and IgA composition differ in Estonian and Swedish mothers-relationship to microbial pressure and infant allergy. Pediatr Res. 2010; 68, 330334.
18. Sikand, V, Tong, PS, Walker, J. Effect of adding salt during the diafiltration step of milk protein concentrate powder manufacture on mineral and soluble protein composition. Dairy Sci Technol. 2013; 93, 401413.
19. Urwin, HJ, Miles, EA, Noakes, PS, et al. Salmon consumption during pregnancy alters fatty acid composition and secretory IgA concentration in human breast milk. J Nutr. 2012; 142, 16031610.
20. Striker, GA, Casanova, LD, Nagao, AT. Influence of type of delivery on A, G and M immunoglobulin concentration in maternal colostrum. J Pediatr (Rio J). 2004; 80, 123128.
21. Brandtzaeg, P. The mucosal immune system and its integration with the mammary glands. J Pediatr. 2010; 156(Suppl. 2), S8S15.
22. McDonald, SD, Pullenayegum, E, Chapman, B, et al. Prevalence and predictors of exclusive breastfeeding at hospital discharge. Obstet Gynecol. 2012; 119, 11711179.
23. Dizdar, EA, Sari, FN, Degirmencioglu, H, et al. Effect of mode of delivery on macronutrient content of breast milk. J Matern Fetal Neonatal Med. 2014; 27, 10991102.
24. Kulski, JK, Smith, M, Hartmann, PE. Normal and caesarian section delivery and the initiation of lactation in women. Aust J Exp Biol Med Sci. 1981; 59, 405412.
25. Khodayar-Pardo, P, Mira-Pascual, L, Collado, MC, Martinez-Costa, C. Impact of lactation stage, gestational age and mode of delivery on breast milk microbiota. J Perinatol. 2014; 34, 599605.
26. Cabrera-Rubio, R, Collado, MC, Laitinen, K, et al.. The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery. Am J Clin Nutr. 2012; 96, 544551.
27. Savilahti, E, Siltanen, M, Kajosaari, M, Vaarala, O, Saarinen, KM. IgA antibodies, TGF-beta1 and -beta2, and soluble CD14 in the colostrum and development of atopy by age 4. Pediatr Res. 2005; 58, 13001305.
28. Groer, MW, Shelton, MM. Exercise is associated with elevated proinflammatory cytokines in human milk. J Obstet Gynecol Neonatal Nurs. 2009; 38, 3541.
29. Walter, J, Kuhn, L, Ghosh, MK, et al. Low and undetectable breast milk interleukin-7 concentrations are associated with reduced risk of postnatal HIV transmission. J Acquir Immune Defic Syndr. 2007; 46, 200207.
30. Amoudruz, P, Holmlund, U, Schollin, J, Sverremark-Ekstrom, E, Montgomery, SM. Maternal country of birth and previous pregnancies are associated with breast milk characteristics. Pediatr Allergy Immunol. 2009; 20, 1929.
31. Kawano, A, Emori, Y. Changes in maternal secretory immunoglobulin a levels in human milk during 12 weeks after parturition. Am J Hum Biol. 2013; 25, 399403.
32. Prescott, SL, Wickens, K, Westcott, L, et al. Supplementation with Lactobacillus rhamnosus or Bifidobacterium lactis probiotics in pregnancy increases cord blood interferon-gamma and breast milk transforming growth factor-beta and immunoglobin A detection. Clin Exp Allergy. 2008; 38, 16061614.
33. Kuitunen, M, Kukkonen, AK, Savilahti, E. Impact of maternal allergy and use of probiotics during pregnancy on breast milk cytokines and food antibodies and development of allergy in children until 5 years. Int Arch Allergy Immunol. 2012; 159, 162170.
34. Zanardo, V, Nicolussi, S, Cavallin, S, et al. Effect of maternal smoking on breast milk interleukin-1alpha, beta-endorphin, and leptin concentrations and leptin concentrations. Environ Health Perspect. 2005; 113, 14101413.
35. Szlagatys-Sidorkiewicz, A, Wos, E, Aleksandrowicz, E, et al. Cytokine profile of mature milk from smoking and nonsmoking mothers. J Pediatr Gastroenterol Nutr. 2013; 56, 382384.



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed