Skip to main content Accessibility help

Evolution of DOHaD: the impact of environmental health sciences

  • A. C. Haugen (a1), T. T. Schug (a1), G. Collman (a1) and J. J. Heindel (a1)


Environmental exposures have a significant influence on the chronic health conditions plaguing children and adults. Although the Developmental Origins of Health and Disease (DOHaD) paradigm historically has focused on nutrition, an expanding body of research specifically communicates the effects of chemical exposures on early-life development and the propagation of non-communicable disease across the lifespan. This paper provides an overview of 20 years of research efforts aimed at identifying critical windows of susceptibility to environmental exposures and the signaling changes and epigenetic influences associated with disease progression. DOHaD grants funded by the National Institute of Environmental Health Sciences (NIEHS) in 1991, 2001 and 2011 are identified by grant-analysis software, and each portfolio is analyzed for exposures, disease endpoints, windows of exposure, study design and impact on the field based on publication data. Results show that the 1991 and 2001 portfolios comprised metals, PCBs and air pollutants; however, by 2011, the portfolio has evolved to include or expand the variety of endocrine disruptors, pesticides/persistent organic pollutants and metals. An assortment of brain-health endpoints is most targeted across the portfolios, whereas reproduction and cancer increase steadily over the same time period, and new endpoints like obesity are introduced by 2011. With mounting evidence connecting early-life exposures to later-life disease, we conclude that it is critical to expand the original DOHaD concept to include environmental chemical exposures, and to continue a research agenda that emphasizes defining sensitive windows of exposure and the mechanisms that cause disease.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Evolution of DOHaD: the impact of environmental health sciences
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Evolution of DOHaD: the impact of environmental health sciences
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Evolution of DOHaD: the impact of environmental health sciences
      Available formats


Corresponding author

*Address for correspondence: J. J. Heindel, Division of Extramural Research and Training, NIEHS, 530 Davis Drive, RTP, NC 27709, USA. (Email


Hide All
1. Ravelli, GP, Stein, ZA, Susser, MW. Obesity in young men after famine exposure in utero and early infancy. N Engl J Med. 1976; 295, 349353.
2. Barker, DJ, Osmond, C. Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet. 1986; 1, 10771081.
3. Barker, DJ, Winter, PD, Osmond, C, Margetts, B, Simmonds, SJ. Weight in infancy and death from ischaemic heart disease. Lancet. 1989; 2, 577580.
4. Barker, DJ. Deprivation in infancy and risk of ischaemic heart disease. Lancet. 1991; 337, 981.
5. Barker, DJ, Gluckman, PD, Godfrey, KM, et al. Fetal nutrition and cardiovascular disease in adult life. Lancet. 1993; 341, 938941.
6. McLachlan, JA, Newbold, RR, Bullock, BC. Long-term effects on the female mouse genital tract associated with prenatal exposure to diethylstilbestrol. Cancer Res. 1980; 40, 39883999.
7. Newbold, RR, Bullock, BC, McLachlan, JA. Progressive proliferative changes in the oviduct of mice following developmental exposure to diethylstilbestrol. Teratog Carcinog Mutagen. 1985; 5, 473480.
8. Burbacher, TM, Rodier, PM, Weiss, B. Methylmercury developmental neurotoxicity: a comparison of effects in humans and animals. Neurotoxicol Teratol. 1990; 12, 191202.
9. Gilbert, SG, Grant-Webster, KS. Neurobehavioral effects of developmental methylmercury exposure. Environ Health Perspect. 1995; 103(Suppl. 6), 135142.
10. Bellinger, D, Sloman, J, Leviton, A, et al. Low-level lead exposure and children’s cognitive function in the preschool years. Pediatrics. 1991; 87, 219227.
11. Bellinger, D, Dietrich, KN. Low-level lead exposure and cognitive function in children. Pediatr Ann. 1994; 23, 600605.
12. Banks, EC, Ferretti, LE, Shucard, DW. Effects of low level lead exposure on cognitive function in children: a review of behavioral, neuropsychological and biological evidence. Neurotoxicology. 1997; 18, 237281.
13. Needleman, HL, Schell, A, Bellinger, D, Leviton, A, Allred, EN. The long-term effects of exposure to low doses of lead in childhood. An 11-year follow-up report. N Engl J Med. 1990; 322, 8388.
14. Venter, JC, Adams, MD, Myers, EW, et al. The sequence of the human genome. Science. 2001; 291, 13041351.
15. Wadhwa, PD, Buss, C, Entringer, S, Swanson, JM. Developmental origins of health and disease: brief history of the approach and current focus on epigenetic mechanisms. Semin Reprod Med. 2009; 27, 358368.
16. Callinan, PA, Feinberg, AP. The emerging science of epigenomics. Hum Mol Genet. 2006; 15(Spec No. 1), R95R101.
17. Huang, WW, Yin, Y, Bi, Q, et al. Developmental diethylstilbestrol exposure alters genetic pathways of uterine cytodifferentiation. Mol Endocrinol. 2005; 19, 669682.
18. Lehmann, KP, Phillips, S, Sar, M, Foster, PM, Gaido, KW. Dose-dependent alterations in gene expression and testosterone synthesis in the fetal testes of male rats exposed to di (n-butyl) phthalate. Toxicol Sci. 2004; 81, 6068.
19. Ruden, DM, Xiao, L, Garfinkel, MD, Lu, X. Hsp90 and environmental impacts on epigenetic states: a model for the trans-generational effects of diethylstibesterol on uterine development and cancer. Hum Mol Genet. 2005; 14(Spec No. 1), R149R155.
20. Bhattacherjee, V, Mukhopadhyay, P, Singh, S, et al. Neural crest and mesoderm lineage-dependent gene expression in orofacial development. Differentiation. 2007; 75, 463477.
21. Dolinoy, DC, Weidman, JR, Jirtle, RL. Epigenetic gene regulation: linking early developmental environment to adult disease. Reprod Toxicol. 2007; 23, 297307.
22. Dolinoy, DC, Huang, D, Jirtle, RL. Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc Natl Acad Sci U S A. 2007; 104, 1305613061.
23. Grun, F, Blumberg, B. Environmental obesogens: organotins and endocrine disruption via nuclear receptor signaling. Endocrinology. 2006; 147(Suppl.), S50S55.
24. Keri, RA, Ho, SM, Hunt, PA, et al. An evaluation of evidence for the carcinogenic activity of bisphenol A. Reprod Toxicol. 2007; 24, 240252.
25. Schug, TT, Janesick, A, Blumberg, B, Heindel, JJ. Endocrine disrupting chemicals and disease susceptibility. J Steroid Biochem Mol Biol. 2011; 127, 204215.
26. Soto, AM, Maffini, MV, Sonnenschein, C. Neoplasia as development gone awry: the role of endocrine disruptors. Int J Androl. 2008; 31, 288293.
27. Janesick, A, Blumberg, B. Obesogens, stem cells and the developmental programming of obesity. Int J Androl. 2012; 35, 437448.
28. Heindel, JJ, McAllister, KA, Worth, L Jr, Tyson, FL. Environmental epigenomics, imprinting and disease susceptibility. Epigenetics. 2006; 1, 16.
29. Kang, ER, Iqbal, K, Tran, DA, et al. Effects of endocrine disruptors on imprinted gene expression in the mouse embryo. Epigenetics. 2011; 6, 937950.
30. Grandjean, P, Weihe, P. Developmental origins of environmentally induced disease and dysfunction International Conference on Foetal Programming and Developmental Toxicity, Torshavn, Faroe Islands, 20–24 May, 2007. Basic Clin Pharmacol Toxicol. 2008; 102, 7172.
31. Darney, S, Fowler, B, Grandjean, P, et al. Prenatal Programming and Toxicity II (PPTOX II): role of environmental stressors in the developmental origins of disease. Reprod Toxicol. 2011; 31, 271.
32. Schug, TT, Barouki, R, Gluckman, P, et al. PPTOX III: environmental stressors in the developmental origins of disease: evidence and mechanisms. Toxicol Sci. 2013; 131, 343350.
33. Barouki, R, Gluckman, PD, Grandjean, P, Hanson, M, Heindel, JJ. Developmental origins of non-communicable disease: implications for research and public health. Environ Health. 2012; 11, 42 (
34. Needleman, HL, McFarland, C, Ness, RB, Fienberg, SE, Tobin, MJ. Bone lead levels in adjudicated delinquents. A case control study. Neurotoxicol Teratol. 2002; 24, 711717.
35. Needleman, HL, Riess, JA, Tobin, MJ, Biesecker, GE, Greenhouse, JB. Bone lead levels and delinquent behavior. JAMA. 1996; 275, 363369.
36. Dietrich, KN, Succop, PA, Berger, OG, Hammond, PB, Bornschein, RL. Lead exposure and the cognitive development of urban preschool children: the Cincinnati Lead Study cohort at age 4 years. Neurotoxicol Teratol. 1991; 13, 203211.
37. Lanphear, BP, Hornung, R, Khoury, J, et al. Low-level environmental lead exposure and children’s intellectual function: an international pooled analysis. Environ Health Perspect. 2005; 113, 894899.
38. Pounds, JG, Long, GJ, Rosen, JF. Cellular and molecular toxicity of lead in bone. Environ Health Perspect. 1991; 91, 1732.
39. Rice, DC, Evangelista de Duffard, AM, Duffard, R, et al. Lessons for neurotoxicology from selected model compounds: SGOMSEC joint report. Environ Health Perspect. 1996; 104(Suppl. 2), 205215.
40. Torres-Sanchez, LE, Berkowitz, G, Lopez-Carrillo, L, et al. Intrauterine lead exposure and preterm birth. Environ Res. 1999; 81, 297301.
41. Haynes, EN, Chen, A, Ryan, P, et al. Exposure to airborne metals and particulate matter and risk for youth adjudicated for criminal activity. Environ Res. 2011; 111, 12431248.
42. Grandjean, P, White, RF. Neurobehavioral dysfunction as a possible sentinel of methylmercury exposure. Hum Ecol Risk Assess. 2001; 7, 10791089.
43. Grandjean, P, Weihe, P, Needham, LL, et al. Relation of a seafood diet to mercury, selenium, arsenic, and polychlorinated biphenyl and other organochlorine concentrations in human milk. Environ Res. 1995; 71, 2938.
44. Dalgard, C, Grandjean, P, Jorgensen, PJ, Weihe, P. Mercury in the umbilical cord: implications for risk assessment for minamata disease. Environ Health Perspect. 1994; 102, 548550.
45. Grandjean, P, Weihe, P. Neurobehavioral effects of intrauterine mercury exposure: potential sources of bias. Environ Res. 1993; 61, 176183.
46. Grandjean, P, Weihe, P, Jorgensen, PJ, et al. Impact of maternal seafood diet on fetal exposure to mercury, selenium, and lead. Arch Environ Health. 1992; 47, 185195.
47. Grandjean, P, Weihe, P, White, RF, et al. Cognitive deficit in 7-year-old children with prenatal exposure to methylmercury. Neurotoxicol Teratol. 1997; 19, 417428.
48. Rice, DC. The US EPA reference dose for methylmercury: sources of uncertainty. Environ Res. 2004; 95, 406413.
49. Murata, K, Budtz-Jorgensen, E, Grandjean, P. Benchmark dose calculations for methylmercury-associated delays on evoked potential latencies in two cohorts of children. Risk Anal. 2002; 22, 465474.
50. Budtz-Jorgensen, E, Grandjean, P, Keiding, N, White, RF, Weihe, P. Benchmark dose calculations of methylmercury-associated neurobehavioural deficits. Toxicol Lett. 2000; 112–113, 193199.
51. Budtz-Jorgensen, E, Grandjean, P, Weihe, P. Separation of risks and benefits of seafood intake. Environ Health Perspect. 2007; 115, 323327.
52. McGivern, RF, Sokol, RZ, Berman, NG. Prenatal lead exposure in the rat during the third week of gestation: long-term behavioral, physiological, and anatomical effects associated with reproduction. Toxicol Appl Pharmacol. 1991; 110, 206215.
53. Crews, D, Gore, AC, Hsu, TS, et al. Transgenerational epigenetic imprints on mate preference. Proc Natl Acad Sci U S A. 2007; 104, 59425946.
54. Anway, MD, Rekow, SS, Skinner, MK. Transgenerational epigenetic programming of the embryonic testis transcriptome. Genomics. 2008; 91, 3040.
55. Guerrero-Bosagna, C, Settles, M, Lucker, B, Skinner, MK. Epigenetic transgenerational actions of vinclozolin on promoter regions of the sperm epigenome. PLoS One. 2010; 5, e13100.
56. Skinner, MK, Manikkam, M, Guerrero-Bosagna, C. Epigenetic transgenerational actions of environmental factors in disease etiology. Trends Endocrinol Metab. 2010; 21, 214222.
57. Anway, MD, Cupp, AS, Uzumcu, M, Skinner, MK. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science. 2005; 308, 14661469.
58. Birnbaum, LS. NIEHS’s new strategic plan. Environ Health Perspect. 2012; 120, a298.
59. Rutter, M, Jones, RR (eds). Lead versus health: sources and effects of low level lead exposure. Arch Dis Child. 1983; 58, 759.
60. Skinner, MK, Anway, MD, Savenkova, MI, Gore, AC, Crews, D. Transgenerational epigenetic programming of the brain transcriptome and anxiety behavior. PLoS One. 2008; 3, e3745.
61. Skinner, MK, Manikkam, M, Guerrero-Bosagna, C. Epigenetic transgenerational actions of endocrine disruptors. Reprod Toxicol. 2011; 31, 337343.
62. Wolstenholme, JT, Edwards, M, Shetty, SR, et al. Gestational exposure to bisphenol a produces transgenerational changes in behaviors and gene expression. Endocrinology. 2012; 153, 38283838.
63. Wolstenholme, JT, Taylor, JA, Shetty, SR, et al. Gestational exposure to low dose bisphenol A alters social behavior in juvenile mice. PLoS One. 2011; 6, e25448.
64. Wolstenholme, JT, Rissman, EF, Connelly, JJ. The role of bisphenol A in shaping the brain, epigenome and behavior. Horm Behav. 2011; 59, 296305.


Type Description Title
Supplementary materials

Haugen Supplementary Material
Tables S1-S2

 Word (306 KB)
306 KB

Evolution of DOHaD: the impact of environmental health sciences

  • A. C. Haugen (a1), T. T. Schug (a1), G. Collman (a1) and J. J. Heindel (a1)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed