Skip to main content Accessibility help

Epigenetic changes in hypothalamic appetite regulatory genes may underlie the developmental programming for obesity in rat neonates subjected to a high-carbohydrate dietary modification

  • S. Mahmood (a1), D. J. Smiraglia (a2), M. Srinivasan (a1) and M. S. Patel (a1)


Earlier, we showed that rearing of newborn rats on a high-carbohydrate (HC) milk formula resulted in the onset of hyperinsulinemia, its persistence in the post-weaning period and adult-onset obesity. DNA methylation of CpG dinucleotides in the proximal promoter region and modifications in the N-terminal tail of histone 3 associated with the neuropeptide Y (Npy) and pro-opiomelanocortin (Pomc) genes were investigated to decipher the molecular mechanisms supporting the development of obesity in HC females. Although there were no differences in the methylation status of CpG dinucleotides in the proximal promoter region of the Pomc gene, altered methylation of specific CpG dinucleotides proximal to the transcription start site was observed for the Npy gene in the hypothalami of 16- and 100-day-old HC rats compared with their methylation status in mother-fed (MF) rats. Investigation of histone tail modifications on hypothalamic chromatin extracts from 16-day-old rats indicated decreased acetylation of lysine 9 in histone 3 (H3K9) for the Pomc gene and increased acetylation for the same residue for the Npy gene, without changes in histone methylation (H3K9) in both genes in HC rats. These findings are consistent with the changes in the levels of Npy and Pomc mRNAs in the hypothalami of HC rats compared with MF animals. Our results suggest that epigenetic modifications could contribute to the altered gene expression of the Npy and Pomc genes in the hypothalami of HC rats and could be a mechanism leading to hyperphagia and the development of obesity in adult female HC rats.


Corresponding author

Address for correspondence: M. S. Patel, Department of Biochemistry, School of Medicine and Biomedical Sciences, 140 Farber Hall, 3435 Main Street, Buffalo, NY 14214, USA. Email


Hide All
1.Flegal, KM, Carroll, MD, Ogden, CL, Curtin, LR. Prevalence and trends in obesity among US adults, 1999-2008. JAMA. 2010; 303, 235241.
2.Fernandez-Twinn, DS, Ozanne, SE. Early life nutrition and metabolic programming. Annals NY Acad Sci. 2010; 1212, 7896.
3.Guilloteau, P, Zabielski, R, Hammon, HM, Metges, CC. Adverse effects of nutritional programming during prenatal and early postnatal life, some aspects of regulation and potential prevention and treatments. J Physiol Pharmacol (Polish Physiol Soc). 2009; 60(Suppl 3), 1735.
4.Plagemann, A, Davidowa, H, Harder, T, Dudenhausen, JW. Developmental programming of the hypothalamus: a matter of insulin. A comment on: Horvath, T. L., Bruning, J. C.: Developmental programming of the hypothalamus: a matter of fat. Nat Med. (2006); 12, 52–53. Neuro Endocrinol Lett. 2006; 27, 7072.
5.Palou, M, Pico, C, McKay, JA, et al. Protective effects of leptin during the suckling period against later obesity may be associated with changes in promoter methylation of the hypothalamic pro-opiomelanocortin gene. Br J Nutr. 2011; 106, 769778.
6.Srinivasan, M, Patel, MS. Metabolic programming in the immediate postnatal period. Trends Endocrinol Metab. 2008; 19, 146152.
7.Patel, MS, Srinivasan, M. Metabolic programming in the immediate postnatal life. Ann Nutr Metab. 2011; 58(Suppl 2), 1828.
8.Grove, KL, Allen, S, Grayson, BE, Smith, MS. Postnatal development of the hypothalamic neuropeptide Y system. Neuroscience. 2003; 116, 393406.
9.Kozak, R, Richy, S, Beck, B. Persistent alterations in neuropeptide Y release in the paraventricular nucleus of rats subjected to dietary manipulation during early life. Eur J Neurosci. 2005; 21, 28872892.
10.Davidowa, H, Plagemann, A. Decreased inhibition by leptin of hypothalamic arcuate neurons in neonatally overfed young rats. Neuroreport. 2000; 11, 27952798.
11.Davidowa, H, Plagemann, A. Insulin resistance of hypothalamic arcuate neurons in neonatally overfed rats. Neuroreport. 2007; 18, 521524.
12.Plagemann, A, Harder, T, Rake, A, et al. Observations on the orexigenic hypothalamic neuropeptide Y-system in neonatally overfed weanling rats. J Neuroendocrinol. 1999; 11, 541546.
13.Newell-Price, J, King, P, Clark, AJ. The CpG island promoter of the human proopiomelanocortin gene is methylated in nonexpressing normal tissue and tumors and represses expression. Mol Endocrinol. 2001; 15, 338348.
14.Ho, SM, Tang, WY. Techniques used in studies of epigenome dysregulation due to aberrant DNA methylation: an emphasis on fetal-based adult diseases. Reprod Toxicol. 2007; 23, 267282.
15.Srinivasan, M, Mitrani, P, Sadhanandan, G, et al. A high-carbohydrate diet in the immediate postnatal life of rats induces adaptations predisposing to adult-onset obesity. J Endocrinol. 2008; 197, 565574.
16.Mitrani, P, Srinivasan, M, Dodds, C, Patel, MS. Autonomic involvement in the permanent metabolic programming of hyperinsulinemia in the high-carbohydrate rat model. Am J Physiol Endocrinol Metab. 2007; 292, E1364E1377.
17.Vadlamudi, S, Kalhan, SC, Patel, MS. Persistence of metabolic consequences in the progeny of rats fed a HC formula in their early postnatal life. Am J Physiol. 1995; 269, E731E738.
18.Srinivasan, M, Dodds, C, Ghanim, H, et al. Maternal obesity and fetal programming: effects of a high-carbohydrate nutritional modification in the immediate postnatal life of female rats. Am J Physiol Endocrinol Metab. 2008; 295, E895E903.
19.Hiremagalur, BK, Vadlamudi, S, Johanning, GL, Patel, MS. Long-term effects of feeding high carbohydrate diet in pre-weaning period by gastrostomy: a new rat model for obesity. Int J Obes Relat Metab Disord. 1993; 17, 495502.
20.Vadlamudi, S, Hiremagalur, BK, Tao, L, et al. Long-term effects on pancreatic function of feeding a HC formula to rats during the preweaning period. Am J Physiol. 1993; 265, E565E571.
21.Livak, KJ, Schmittgen, TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001; 25, 402408.
22.Ehrich, M, Nelson, MR, Stanssens, P, et al. Quantitative high-throughput analysis of DNA methylation patterns by base-specific cleavage and mass spectrometry. Proc Natl Acad Sci U S A. 2005; 102, 1578515790.
23.Li, LC, Dahiya, R. MethPrimer: designing primers for methylation PCRs. Bioinformatics. 2002; 18, 14271431.
24.Farre, D, Roset, R, Huerta, M, et al. Identification of patterns in biological sequences at the ALGGEN server: PROMO and MALGEN. Nucleic Acids Res. 2003; 31, 36513653.
25.Messeguer, X, Escudero, R, Farre, D, et al. PROMO: detection of known transcription regulatory elements using species-tailored searches. Bioinformatics. 2002; 18, 333334.
26.Plagemann, A, Harder, T, Brunn, M, et al. Hypothalamic proopiomelanocortin promoter methylation becomes altered by early overfeeding: an epigenetic model of obesity and the metabolic syndrome. J Physiol. 2009; 587, 49634976.
27.Portela, A, Esteller, M. Epigenetic modifications and human disease. Nat Biotechnol. 2010; 28, 10571068.
28.Jaskelioff, M, Peterson, CL. Chromatin and transcription: histones continue to make their marks. Nat Cell Biol. 2003; 5, 395399.
29.Jenuwein, T. The epigenetic magic of histone lysine methylation. FEBS J. 2006; 273, 31213135.
30.Hanson, M, Godfrey, KM, Lillycrop, KA, Burdge, GC, Gluckman, PD. Developmental plasticity and developmental origins of non-communicable disease: theoretical considerations and epigenetic mechanisms. Prog Biophys Mol Biol. 2011; 106, 272280.
31.Lillycrop, KA, Burdge, GC. Epigenetic changes in early life and future risk of obesity. Int J Obes (Lond). 2011; 35, 7283.
32.Vucetic, Z, Kimmel, J, Totoki, K, Hollenbeck, E, Reyes, TM. Maternal high-fat diet alters methylation and gene expression of dopamine and opioid-related genes. Endocrinology. 2010; 151, 47564764.
33.Lillycrop, KA, Slater-Jefferies, JL, Hanson, MA, et al. Induction of altered epigenetic regulation of the hepatic glucocorticoid receptor in the offspring of rats fed a protein-restricted diet during pregnancy suggests that reduced DNA methyltransferase-1 expression is involved in impaired DNA methylation and changes in histone modifications. Br J Nutr. 2007; 97, 10641073.
34.Dolinoy, DC, Das, R, Weidman, JR, Jirtle, RL. Metastable epialleles, imprinting, and the fetal origins of adult diseases. Pediatr Res. 2007; 61, 30R37R.
35.Waterland, RA, Jirtle, RL. Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol. 2003; 23, 52935300.
36.Champagne, FA, Weaver, IC, Diorio, J, et al. Maternal care associated with methylation of the estrogen receptor-alpha1b promoter and estrogen receptor-alpha expression in the medial preoptic area of female offspring. Endocrinol. 2006; 147, 29092915.
37.Bagot, RC, Zhang, TY, Wen, X, et al. Variations in postnatal maternal care and the epigenetic regulation of metabotropic glutamate receptor 1 expression and hippocampal function in the rat. Proc Natl Acad Sci U S A. 2012; 109(Suppl 2), 1720017207.
38.Therrien, M, Drouin, J. Pituitary pro-opiomelanocortin gene expression requires synergistic interactions of several regulatory elements. Mol Cell Biol. 1991; 11, 34923503.
39.Shin, BC, Dai, Y, Thamotharan, M, Gibson, LC, Devaskar, SU. Pre- and postnatal calorie restriction perturbs early hypothalamic neuropeptide and energy balance. J Neurosci Res. 2012; 90, 11691182.
40.Coupe, B, Amarger, V, Grit, I, Benani, A, Parnet, P. Nutritional programming affects hypothalamic organization and early response to leptin. Endocrinol. 2010; 151, 702713.
41.Fan, C, Liu, X, Shen, W, Deckelbaum, RJ, Qi, K. The regulation of leptin, leptin receptor and pro-opiomelanocortin expression by n-3 PUFAs in diet-induced obese mice is not related to the methylation of their promoters. Nutr Metab. 2011; 8, 3139.
42.Kouzarides, T. Chromatin modifications and their function. Cell. 2007; 128, 693705.
43.Li, B, Carey, M, Workman, JL. The role of chromatin during transcription. Cell. 2007; 128, 707719.
44.Wang, G, Balamotis, MA, Stevens, JL, et al. Mediator requirement for both recruitment and postrecruitment steps in transcription initiation. Mol Cell. 2005; 17, 683694.
45.Pattyn, F, Hoebeeck, J, Robbrecht, P, et al. methBLAST and methPrimerDB: web-tools for PCR based methylation analysis. BMC Bioinformatics. 2006; 7, 496504.
46.Rajakumar, A, Thamotharan, S, Raychaudhuri, N, Menon, RK, Devaskar, SU. Trans-activators regulating neuronal glucose transporter isoform-3 gene expression in mammalian neurons. J Biol Chem. 2004; 279, 2676826779.
47.Stevens, A, Begum, G, Cook, A, et al. Epigenetic changes in the hypothalamic proopiomelanocortin and glucocorticoid receptor genes in the ovine fetus after periconceptional undernutrition. Endocrinol. 2010; 151, 36523664.
48.Park, JH, Stoffers, DA, Nicholls, RD, Simmons, RA. Development of type 2 diabetes following intrauterine growth retardation in rats is associated with progressive epigenetic silencing of Pdx1. J Clin Invest. 2008; 118, 23162324.
49.Raychaudhuri, N, Raychaudhuri, S, Thamotharan, M, Devaskar, SU. Histone code modifications repress glucose transporter 4 expression in the intrauterine growth-restricted offspring. J Biol Chem. 2008; 283, 1361113626.
50.Haney, PM, Raefsky-Estrin, C, Caliendo, A, Patel, MS. Precocious induction of hepatic glucokinase and malic enzyme in artificially reared rat pups fed a high-carbohydrate diet. Arch Biochem Biophys. 1986; 244, 787794.


Epigenetic changes in hypothalamic appetite regulatory genes may underlie the developmental programming for obesity in rat neonates subjected to a high-carbohydrate dietary modification

  • S. Mahmood (a1), D. J. Smiraglia (a2), M. Srinivasan (a1) and M. S. Patel (a1)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed