Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-27T21:12:34.942Z Has data issue: false hasContentIssue false

(-)-epicatechin treatment did not modify the thermogenic pathway in the gastrocnemius muscle of male rat offspring obeses by programming

Published online by Cambridge University Press:  19 March 2024

María Elena Tejeda
Affiliation:
Unidad de Investigación en Obesidad, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México Subdirección de Investigación Clínica, Dirección de Investigación, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Ciudad de México, México
Sergio De los Santos
Affiliation:
Unidad de Investigación en Obesidad, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México Subdirección de Investigación Clínica, Dirección de Investigación, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Ciudad de México, México
Ramón Mauricio Coral-Vázquez
Affiliation:
Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México Subdirección de Enseñanza e Investigación, Centro Médico Nacional “20 de Noviembre”, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Ciudad de México, México
Ana Álvarez-Chávez
Affiliation:
Unidad de Investigación en Obesidad, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México Subdirección de Investigación Clínica, Dirección de Investigación, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Ciudad de México, México
Carlos Palma Flores
Affiliation:
Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México Subdirección de Enseñanza e Investigación, Centro Médico Nacional “20 de Noviembre”, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Ciudad de México, México
Elena Zambrano
Affiliation:
Departamento de Biología de Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Ciudad de México, México
Juan Pablo Méndez
Affiliation:
Unidad de Investigación en Obesidad, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México Subdirección de Investigación Clínica, Dirección de Investigación, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Ciudad de México, México
Patricia Canto*
Affiliation:
Unidad de Investigación en Obesidad, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México Subdirección de Investigación Clínica, Dirección de Investigación, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Ciudad de México, México
*
Corresponding author: P. Canto; Email: ipcanto64@gmail.com

Abstract

The aim of this study was to analyse the expression of genes related to the regulation of energy metabolism in skeletal muscle tissue by comparing male offspring in two age groups [at 110 and 245 postnatal days (pnd)] from a mother with obesity induced by a high-fat diet and (-)-epicatechin (Epi) administration. Four groups of six male offspring from different litters were randomly selected for the control groups [C and offspring of mothers with maternal obesity (MO)] or Epi intervention groups. We evaluated the effect of Epi on gastrocnemius tissue by analysing the mRNA and protein expression levels of Fndc5/irisin, Pgc-1α, Ucp3, and Sln. Epi significantly increased the Pgc-1α protein in the MO group of offspring at 110 pnd (p < 0.036, MO vs. MO+Epi), while at 245 pnd, Epi increased Fndc5/irisin mRNA expression in the MO+Epi group versus the MO group (p = 0.006).

No differences were detected in Fndc5/irisin, Ucp3 or Sln mRNA or protein levels (including Pgc-1α mRNA) in the offspring at 110 pnd or in Pgc-1α, Ucp3, or Sln mRNA or protein levels (including Fndc5/irisin protein) at 245 pnd among the experimental groups. In conclusion, (-)-epicatechin treatment increased Fndc5/irisin mRNA expression and Pgc-α protein levels in the gastrocnemius muscle of offspring at postnatal days 110 and 245. Furthermore, it is suggested that the flavonoid effect in a model of obesity and its impact on thermogenesis in skeletal muscle are regulated by a different pathway than Fndc5/irisin.

Type
Original Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press in association with The International Society for Developmental Origins of Health and Disease (DOHaD)

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Zambrano, E, Ibáñez, C, Martínez-Samayoa, PM, Lomas-Soria, C, Durand-Carbajal, M, Rodríguez-González, GL. Maternal obesity: lifelong metabolic outcomes for offspring from poor developmental trajectories during the perinatal period. Arch Med Res. 2016; 47(1), 112.CrossRefGoogle ScholarPubMed
Pileggi, CA, Segovia, SA, Markworth, JF, et al. Maternal conjugated linoleic acid supplementation reverses high-fat diet-induced skeletal muscle atrophy and inflammation in adult male rat offspring. Am J Physiol Regul Integr Comp Physiol. 2016; 310(5), R432439.CrossRefGoogle ScholarPubMed
Mikovic, J, Brightwell, C, Lindsay, A, et al. An obesogenic maternal environment impairs mouse growth patterns, satellite cell activation, and markers of postnatal myogenesis. Am J Physiol Endocrinol Metab. 2020; 319(6), E1008E1018.CrossRefGoogle ScholarPubMed
Chen, Y, Hu, Q, Wang, C, Wang, T. The crosstalk between BAT thermogenesis and skeletal muscle dysfunction. Front Physiol. 2023; 14, 141132830.Google ScholarPubMed
Bostrom, P, Wu, J, Jedrychowski, MP, et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 2012; 481(7382), 463468.CrossRefGoogle ScholarPubMed
Vaughan, R, Gannon, N, Barberena, M, et al. Characterization of the metabolic effects of irisin on skeletal muscle in vitro. Diabetes Obes Metab. 2014; 16(8), 711718.CrossRefGoogle ScholarPubMed
Bao, JF, She, QY, Hu, PP, Jia, N, Li, A. Irisin, a fascinating field in our times. Trends Endocrinol Metab. 2022; 33(9), 601613.CrossRefGoogle ScholarPubMed
Guilford, BL, Parson, JC, Grote, CW, Vick, SN, Ryals, JM, Wright, DE. Increased FNDC5 is associated with insulin resistance in high-fat-fed mice. Physiol Rep. 2017; 5(13), e13319.CrossRefGoogle ScholarPubMed
Cremonini, E, Iglesias, DE, Kang, J, et al. (-)-epicatechin and the comorbidities of obesity. Arch Biochem Biophys. 2020; 690, 108505.CrossRefGoogle ScholarPubMed
De los Santos, S, Coral-Vázquez, RM, Menjivar, M, et al. (–)-epicatechin modifies body composition of the male offspring of obese rats. J Funct Foods. 2019; 58, 367373.CrossRefGoogle Scholar
Moreno-Ulloa, A, Cid, A, Rubio-Gayosso, I, Ceballos, G, Villarreal, F, Ramirez-Sanchez, I. Effects of (-)-epicatechin and derivatives on nitric oxide mediated induction of mitochondrial proteins. Bioorg Med Chem Lett. 2013; 23(15), 44414446.CrossRefGoogle ScholarPubMed
Nogueira, L, Ramirez-Sanchez, I, Perkins, GA, et al. (-)-epicatechin enhances fatigue resistance and oxidative capacity in mouse muscle. J Physiol. 2011; 589(18), 46154631.CrossRefGoogle ScholarPubMed
De los Santos, S, Reyes-Castro, LA, Coral-Vázquez, RM, et al. (-)-epicatechin reduces adiposity in male offspring of obese rats. J Dev Orig Health Dis. 2020; 11(1), 3743.CrossRefGoogle ScholarPubMed
Rodríguez-González, GL, De los Santos, S, Méndez-Sánchez, D, et al. High-fat diet consumption by male rat offspring of obese mothers exacerbates adipose tissue hypertrophy and metabolic alterations in adult life. Br J Nutr. 2023; 130(5), 783792.CrossRefGoogle ScholarPubMed
Reeves, PG, Nielsen, FH, Fahey, GC Jr. AIN-93 purified diets for laboratory rodents: final report of the American institute of nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr. 1993; 123(11), 19391951.CrossRefGoogle Scholar
O’Reilly, J, Ono-Moore, KD, Chintapalli, SV, et al. Sex differences in skeletal muscle revealed through fiber type, capillarity, and transcriptomics profiling in mice. Physiol Rep. 2021; 9(18), e15031.CrossRefGoogle ScholarPubMed
Sengupta, P. The laboratory rat: relating its age with human’s. Int J Prev Med. 2013; 4(6), 624630.Google ScholarPubMed
Barbosa, MA, Guerra-Sá, R, De Castro, UGM, et al. Physical training improves thermogenesis and insulin pathway, and induces remodeling in white and brown adipose tissues. J Physiol Biochem. 2018; 74(3), 441454.CrossRefGoogle ScholarPubMed
Dell, RB, Holleran, S, Ramakrishnan, R. Sample size determination. ILAR J. 2002; 43(4), 207213.CrossRefGoogle ScholarPubMed
Richter-Stretton, GL, Fenning, AS, Vella, RK. Skeletal muscle - a bystander or influencer of metabolic syndrome? Diabetes Metab Syndr. 2020; 14(5), 867875.CrossRefGoogle ScholarPubMed
Bayol, SA, Simbi, BH, Stickland, NC. A maternal cafeteria diet during gestation and lactation promotes adiposity and impairs skeletal muscle development and metabolism in rat offspring at weaning. J Physiol. 2005; 567(3), 951961.CrossRefGoogle ScholarPubMed
Salto, R, Girón, MD, Manzano, M, et al. Programming skeletal muscle metabolic flexibility in offspring of male rats in response to maternal consumption of slow digesting carbohydrates during pregnancy. Nutrients. 2020; 12(2), 528.CrossRefGoogle ScholarPubMed
Bayol, SA, Macharia, R, Farrington, SJ, Simbi, BH, Stickland, NC. Evidence that a maternal “junk food” diet during pregnancy and lactation can reduce muscle force in offspring. Eur J Nutr. 2009; 48(1), 6265.CrossRefGoogle ScholarPubMed
Jun, L, Robinson, M, Geetha, T, Broderick, TL, Babu, JR. Prevalence and mechanisms of skeletal muscle atrophy in metabolic conditions. Int J Mol Sci. 2023; 24(3), 2973.CrossRefGoogle ScholarPubMed
Fuller-Jackson, JP, Henry, BA. Adipose and skeletal muscle thermogenesis: studies from large animals. J Endocrinol. 2018; 237(3), R99R115.CrossRefGoogle ScholarPubMed
De Luise, M, Harker, M. Skeletal muscle metabolism: effect of age, obesity, thyroid and nutritional status. Horm Metab Res. 1989; 21(08), 410415.CrossRefGoogle ScholarPubMed
Vásquez-Alvarez, S, Bustamante-Villagomez, SK, Vazquez-Marroquin, G, et al. Metabolic age, an index based on basal metabolic rate, can predict individuals that are high risk of developing metabolic syndrome. High Blood Press Cardiovasc Prev. 2021; 28(3), 263270.CrossRefGoogle ScholarPubMed
McCurdy, CE, Schenk, S, Hetrick, B, et al. Maternal obesity reduces oxidative capacity in fetal skeletal muscle of Japanese macaques. JCI Insight. 2016; 1(16), e86612.CrossRefGoogle ScholarPubMed
Dias-Rocha, CP, Almeida, MM, Woyames, J, et al. Maternal high-fat diet alters thermogenic markers but not muscle or brown adipose cannabinoid receptors in adult rats. Life Sci. 2022; 306, 120831.CrossRefGoogle ScholarPubMed
Ramírez-Sánchez, I, De los Santos, S, Gonzalez-Basurto, S, et al. (-)-epicatechin improves mitochondrial-related protein levels and ameliorates oxidative stress in dystrophic δ-sarcoglycan null mouse striated muscle. FEBS J. 2014; 281(24), 55675580.CrossRefGoogle ScholarPubMed
Zbinden-Foncea, H, Castro-Sepulveda, M, Fuentes, J, Speisky, H. Effect of epicatechin on skeletal muscle. Curr Med Chem. 2022; 29(6), 11101123.CrossRefGoogle ScholarPubMed
Munguia, L, Ramirez-Sanchez, I, Meaney, E, Villarreal, F, Ceballos, G, Najera, N. Flavonoids from dark chocolate and (-)-epicatechin ameliorate high-fat diet-induced decreases in mobility and muscle damage in aging mice. Food Biosci. 2020; 37, 100710.CrossRefGoogle ScholarPubMed
Trettel, CDS, Pelozin, BRA, Barros, MP, et al. Irisin: an anti-inflammatory exerkine in aging and redox-mediated comorbidities. Front Endocrinol (Lausanne). 2023; 14, 1106529.CrossRefGoogle ScholarPubMed
de Macêdo, SM, Lelis, DF, Mendes, KL, Fraga, CAC, Brandi, IV, Feltenberger, JD. Effects of dietary macronutrient composition on FNDC5 and irisin in mice skeletal muscle. Metab Syndr Relat Disord. 2017; 15, 161169.CrossRefGoogle ScholarPubMed
Li, J, Yi, X, Li, T, et al. Effects of exercise and dietary intervention on muscle, adipose tissue, and blood IRISIN levels in obese male mice and their relationship with the beigeization of white adipose tissue. Endocr Connect. 2022; 11(3), e210625.CrossRefGoogle ScholarPubMed
Kou, G, Li, P, Shi, Y, et al. Sesamin activates skeletal muscle FNDC5 expression and increases irisin secretion via the SIRT1 signaling pathway. J Agric Food Chem. 2022; 70(25), 77047715.CrossRefGoogle ScholarPubMed
Perakakis, N, Triantafyllou, GA, Fernández-Real, JM, et al. Physiology and role of irisin in glucose homeostasis. Nat Rev Endocrinol. 2017; 13(6), 324337.CrossRefGoogle ScholarPubMed
Schwanhäusser, B, Busse, D, Li, N, et al. Global quantification of mammalian gene expression control. Nature. 2011; 473(7347), 337342.CrossRefGoogle ScholarPubMed
Geiger, J, Burkhart, JM, Gambaryan, S, Walter, U, Sickmann, A, Zahedi, RP. Response: platelet transcriptome and proteome--relation rather than correlation. Blood. 2013; 121(26), 52575258.CrossRefGoogle ScholarPubMed
Sahu, B, Pani, S, Swalsingh, G, Bal, NC. Non and epigenetic mechanisms in regulation of adaptive thermogenesis in skeletal muscle. Front Endocrinol. 2019; 10, 517.CrossRefGoogle ScholarPubMed
Maurya, SK, Herrera, JL, Sahoo, SK, et al. Sarcolipin signaling promotes mitochondrial biogenesis and oxidative metabolism in skeletal muscle. Cell Rep. 2018; 24(11), 29192931.CrossRefGoogle ScholarPubMed
Gheit, REAE, Younis, RL, El-Saka, MH, et al. Irisin improves adiposity and exercise tolerance in a rat model of postmenopausal obesity through enhancing adipo-myocyte thermogenesis. J Physiol Biochem. 2022; 78(4), 897913.CrossRefGoogle Scholar
Son, JS, Chae, SA, Zhao, L, et al. Maternal exercise intergenerationally drives muscle-based thermogenesis via activation of apelin-AMPK signaling. EBioMedicine. 2022; 76, 103842.CrossRefGoogle ScholarPubMed