Skip to main content Accessibility help

The effect of high maternal linoleic acid on endocannabinoid signalling in rodent hearts

  • Simone L. Sleep (a1), Nirajan Shrestha (a1), James S. M. Cuffe (a1) (a2), Olivia J. Holland (a1), John P. Headrick (a1), Andrew J. McAinch (a3) (a4) and Deanne H. Hryciw (a3) (a5)...


The endocannabinoid system (ECS), modulated by metabolites of linoleic acid (LA), is important in regulating cardiovascular function. In pregnancy, LA is vital for foetal development. We investigated the effects of elevated LA in H9c2 cardiomyoblasts in vitro and of a high linoleic acid (HLA, 6.21%) or low linoleic acid (LLA, 1.44%) diet during pregnancy in maternal and offspring hearts. H9c2 cell viability was reduced following LA exposure at concentrations between 300 and 1000 µM. HLA diet decreased cannabinoid receptor type 2 (CB2) mRNA expression in foetal hearts from both sexes. However, HLA diet increased CB2 expression in maternal hearts. The mRNA expression of fatty acid amide hydrolase (FAAH) in foetal hearts was higher in females than in males irrespective of diet and N-acyl phosphatidylethanolamine-specific phospholipase D (NAPE-PLD) mRNA expression showed an interaction between diet and sex. Data indicate that a high LA diet alters cell viability and CB2 expression, potentially influencing cardiac function during pregnancy and development of the offspring’s heart.


Corresponding author

Address for correspondence: Dr. Deanne Hryciw, School of Environment and Science, Griffith University, Nathan, QLD, Australia. Email:


Hide All
1. Simopoulos, AP. Importance of the ratio of omega-6/omega-3 essential fatty acids: evolutionary aspects. World Rev Nutr Diet. 2003;92, 122.
2. Naughton, SS, Mathai, ML, Hryciw, DH, McAinch, AJ. Linoleic acid and the pathogenesis of obesity. Prostaglandins Other Lipid Mediat. 2016;125, 9099.
3. Shrestha, N, Cuffe, JSM, Holland, OJ, et al. Elevated maternal linoleic acid reduces circulating leptin concentrations, cholesterol levels and male fetal survival in a rat model. J Physiol. 2019;597, 33493361.
4. Shrestha, N, Cuffe, JSM, Holland, OJ, Perkins, AV, McAinch, AJ, Hryciw, DH. Linoleic acid increases prostaglandin E2 release and reduces mitochondrial respiration and cell viability in human trophoblast-like cells. Cell Physiol Biochem. 2019;52, 94108.
5. Lafond, J, Simoneau, L, Savard, R, Gagnon, MC. Linoleic acid transport by human placental syncytiotrophoblast membranes. Eur J Biochem. 1994;226, 707713.
6. Woods, L, Perez-Garcia, V, Hemberger, M. Regulation of placental development and its impact on fetal growth-new insights from mouse models. Front Endocrinol. 2018;9, 570.
7. Simopoulos, AP. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed Pharmacother. 2002;56, 365379.
8. Abdelmagid, SA, Clarke, SE, Nielsen, DE, et al. Comprehensive profiling of plasma fatty acid concentrations in young healthy Canadian adults. PLoS One. 2015;10, e0116195.
9. Courville, AB, Keplinger, MR, Judge, MP, Lammi-Keefe, CJ. Plasma or red blood cell phospholipids can be used to assess docosahexaenoic acid status in women during pregnancy. Nutr Res. 2009;29, 151155.
10. Vidakovic, AJ, Jaddoe, VW, Voortman, T, Demmelmair, H, Koletzko, B, Gaillard, R. Maternal plasma polyunsaturated fatty acid levels during pregnancy and childhood lipid and insulin levels. Nutr Metab Cardiovasc Dis. 2017;27, 7885.
11. Sakayori, N, Kikkawa, T, Tokuda, H, et al. Maternal dietary imbalance between omega-6 and omega-3 polyunsaturated fatty acids impairs neocortical development via epoxy metabolites. Stem Cells. 2016;34, 470482.
12. Fride, E, Gobshtis, N, Dahan, H, Weller, A, Giuffrida, A, Ben-Shabat, S. The endocannabinoid system during development: emphasis on perinatal events and delayed effects. Vitam Horm. 2009;81, 139158.
13. Pertwee, RG. Ligands that target cannabinoid receptors in the brain: from THC to anandamide and beyond. Addict Biol. 2008;13, 147159.
14. Jenkin, KA, Verty, AN, McAinch, AJ, Hryciw, DH. Endocannabinoids and the renal proximal tubule: an emerging role in diabetic nephropathy. Int J Biochem Cell Biol. 2012;44, 20282031.
15. O’Sullivan, SE, Kendall, PJ, Kendall, DA. Endocannabinoids and the cardiovascular response to stress. J Psychopharmacol. 2012;26, 7182.
16. Duerr, GD, Heinemann, JC, Suchan, G et al. The endocannabinoid-CB2 receptor axis protects the ischemic heart at the early stage of cardiomyopathy. Basic Res Cardiol. 2014; 109, 425.
17. Bukiya, AN. Physiology of the endocannabinoid system during development. Adv Exp Med Biol. 2019;1162, 1337.
18. Briffa, JF, McAinch, AJ, Romano, T, Wlodek, ME, Hryciw, DH. Leptin in pregnancy and development: a contributor to adulthood disease? Am J Physiol Endocrinol Metab. 2015;308, E335E350.
19. Ramirez-Orozco, RE, Garcia-Ruiz, R, Morales, P, Villalon, CM, Villafan-Bernal, JR, Marichal-Cancino, BA. Potential metabolic and behavioural roles of the putative endocannabinoid receptors GPR18, GPR55 and GPR119 in feeding. Curr Neuropharmacol. 2019; 17, 947960.
20. Dainese, E, De Fabritiis, G, Sabatucci, A, et al. Membrane lipids are key modulators of the endocannabinoid-hydrolase FAAH. Biochem J. 2014;457, 463472.
21. Pacher, P, Steffens, S. The emerging role of the endocannabinoid system in cardiovascular disease. Semin Immunopathol. 2009;31, 6377.
22. Nagarkatti, P, Pandey, R, Rieder, SA, Hegde, VL, Nagarkatti, M. Cannabinoids as novel anti-inflammatory drugs. Future Med Chem. 2009;1, 13331349.
23. Shrestha, N, Cuffe, JSM, Hutchinson, DS, et al. Peripheral modulation of the endocannabinoid system in metabolic disease. Drug Discov Today. 2018;23, 592604.
24. Bustin, SA, Benes, V, Garson, JA, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55, 611622.
25. Watkins, SJ, Borthwick, GM, Arthur, HM. The H9C2 cell line and primary neonatal cardiomyocyte cells show similar hypertrophic responses in vitro. In Vitro Cell Dev Biol Anim. 2011;47, 125131.
26. Cetrullo, S, Tantini, B, Flamigni, F, et al. Antiapoptotic and antiautophagic effects of eicosapentaenoic acid in cardiac myoblasts exposed to palmitic acid. Nutrients. 2012;4, 7890.
27. Siegmund, SV, Seki, E, Osawa, Y, Uchinami, H, Cravatt, BF, Schwabe, RF. Fatty acid amide hydrolase determines anandamide-induced cell death in the liver. J Biol Chem. 2006;281, 1043110438.
28. Maia, J, Almada, M, Silva, A, et al. The endocannabinoid system expression in the female reproductive tract is modulated by estrogen. J Steroid Biochem Mol Biol. 2017;174, 4047.
29. Sun, HJ, Lu, Y, Wang, HW, et al. Activation of endocannabinoid receptor 2 as a mechanism of propofol pretreatment-induced cardioprotection against ischemia-reperfusion injury in rats. Oxid Med Cell Longev. 2017;2017, 2186383.
30. Defer, N, Wan, J, Souktani, R, et al. The cannabinoid receptor type 2 promotes cardiac myocyte and fibroblast survival and protects against ischemia/reperfusion-induced cardiomyopathy. FASEB J. 2009;23, 21202130.


The effect of high maternal linoleic acid on endocannabinoid signalling in rodent hearts

  • Simone L. Sleep (a1), Nirajan Shrestha (a1), James S. M. Cuffe (a1) (a2), Olivia J. Holland (a1), John P. Headrick (a1), Andrew J. McAinch (a3) (a4) and Deanne H. Hryciw (a3) (a5)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed