Skip to main content Accessibility help

Eccentric placentae have reduced surface area and are associated with lower birth weight in babies small for gestational age

  • G. Ravikumar (a1), J. Crasta (a1), J. S. Prabhu (a2), T. Thomas (a3), P. Dwarkanath (a4), A. Thomas (a5), T. S. Sridhar (a2) and A. V. Kurpad (a6)...


Placental structure and function determine birth outcomes. Placental mass does not always correlate with fetal birth weight (BW) in uncomplicated pregnancies which raises the possibility of other variables such as placental shape and cord insertion being the determinants of placental efficiency. In total, 160 women with singleton pregnancy, recruited into a pregnancy cohort were studied. Placental weight (PW) was measured and other data were obtained from clinical records. Birth outcomes were classified as small for gestational age (SGA) and appropriate for gestational age (AGA) based on fetal gender, gestational age (GA) and BW. High-resolution images of the chorionic plate were recorded. The shape of the placenta and the insertion of the cord were measured using eccentricity index (EI) and cord centrality index (CCI). Only placentae with eccentrically inserted cords (n=136) were included. The mean BW and PW were 2942 (±435) g and 414 (±82) g with average GA of 38.6 weeks. The mean CCI and EI was 0.483 (±0.17) and 0.482 (±0.16). Neither of these correlated with placental efficiency. However, EI showed negative correlation with placental surface area and breadth. Upon sub-grouping the cohort into SGA (n=32) and AGA (n=104), the SGA babies with the highest EI (third tertile) had significantly lower BW than those with the least eccentric placentae (first tertile). Although eccentric-shaped placentae were present in both SGA and AGA groups, the effect on BW was observed only in the SGA group.


Corresponding author

Author for correspondence: Dr G. Ravikumar, Department of Pathology, St. John's Medical College, Sarjapur Road, Koramangala, Bangalore, KA, India. E-mail:


Hide All
1. Figueras, F, Gratacós, E. Update on the diagnosis and classification of fetal growth restriction and proposal of a stage-based management protocol. Fetal Diagn Ther. 2014; 36, 8698.
2. Barker, DJ. The fetal and infant origins of adult disease. BMJ: British Medical Journal. 1990; 301, 1111.
3. Sankaran, S, Kyle, P. Aetiology and pathogenesis of IUGR. Best Prac Res Clin Obstet Gynaecol. 2009; 23, 765777.
4. Pathak, S, Hook, E, Hackett, G, et al. Cord coiling, umbilical cord insertion and placental shape in an unselected cohort delivering at term: relationship with common obstetric outcomes. Placenta. 2010; 31, 963968.
5. Tamblyn, JA, Morris, RK. Small for gestational age and intrauterine growth restriction. In Obstetrics & Gynaecology: An Evidence-Based Text for MRCOG, 3rd edn (eds. Luesley DM, Kilby MD), 2016; pp. 2812914. CRC Press: Boca Raton, Florida.
6. RCOG. Small-for-Gestational-Age foetus, Investigation and management. Green–top guideline No. 31. London: RCOG, 2013:1–34.
7. De Boo, HA, Harding, JE. The developmental origins of adult disease (Barker) hypothesis. Aust N Z J Obstet Gynaecol. 2006; 46, 414.
8. Dwarkanath, P, Barzilay, JR, Thomas, T, et al. High folate and low vitamin B-12 intakes during pregnancy are associated with small-for-gestational age infants in South Indian women: a prospective observational cohort study. Am J Clin Nutr. 2013; 98, 14501458.
9. Baergen, RN. Macroscopic evaluation of the second and third trimester placenta. In Manual of Pathology of the Human Placenta (eds. Baergen RN), 2011; pp. 3233. Springer: Berlin.
10. Kaplan, C, Lowell, DM, Salafia, C. College of American Pathologists Conference XIX on the examination of the placenta: report of the working group on the definition of structural changes associated with abnormal function in the maternal/fetal/placental unit in the second and third trimesters. Arch Pathol Lab Med. 1991; 115, 709716.
11. Khong, TY, Mooney, EE, Ariel, I, et al. Sampling and definitions of placental lesions: Amsterdam placental workshop group consensus statement. Arch Pathol Lab Med. 2016; 140, 698713.
12. Cleave Books. Ellipses calculator. 2004,
13. Salafia, CM, Misra, DP, Yampolsky, M, et al. Allometric metabolic scaling and fetal and placental weight. Placenta. 2009; 30, 355360.
14. Salafia, CM, Yampolsky, M. Metabolic scaling law for foetus and placenta. Placenta. 2009; 30, 468471.
15. World Health Organization. WHO Expert Committee on Physical Status: The use and interpretation of anthropometry physical status. WHO Technical Report Series 854. WHO: Geneva, 1995.
16. Salafia, CM, Zhang, J, Charles, AK, et al. Placental characteristics and birthweight. Paediatr Perinat Epidemiol. 2008; 22, 229239.
17. Yampolsky, M, Salafia, C, Shlakhter, O, et al. Modelling the variability of shapes of a human placenta. Placenta. 2008; 29, 790797.
18. Salafia, CM, Yampolsky, M, Misra, DP, et al. Placental surface shape, function, and effects of maternal and fetal vascular pathology. Placenta. 2010; 31, 958962.
19. Alwasel, SH, Abotalib, Z, Aljarallah, JS, et al. The breadth of the placental surface but not the length is associated with body size at birth. Placenta. 2012; 33, 619622.
20. Reddy, VM, Geetha, SP, Nim, VK. Variations in Placental attachment of umbilical cord. J Anat Soc India. 2012; 61, 14.
21. Di Salvo, DN, Benson, CB, Laing, FC, et al. Sonographic evaluation of the placental cord insertion site. Am J Roentgenol. 1998; 170, 12951298.
22. Sepulveda, W, Rojas, I, Robert, JA, et al. Placental detection of velamentous insertion of the umbilical cord: a prospective colour Doppler ultrasound study. Ultrasound Obstet Gynecol. 2003; 21, 564569.
23. Sepulveda, W, Wong, AE, Gomez, L, et al. Improving sonographic evaluation of the umbilical cord at the second trimester anatomy scan. J Ultrasound Med. 2009; 28, 831835.
24. Collins, J H, Collins, C L, Collins, CC. Umblical cord accidents, 2010.
25. Yampolsky, M, Salafia, CM, Shlakhter, O, et al. Centrality of the umbilical cord insertion in a human placenta influences the placental efficiency. Placenta. 2009; 30, 10581064.
26. Quant, HS, Sammel, MD, Parry, S, et al. Second‐trimester 3‐dimensional placental sonography as a predictor of small‐for‐gestational‐age birth weight. J Ultrasound Med. 2016; 35, 16931702.


Type Description Title
Supplementary materials

Ravikumar et al. supplementary material
Ravikumar et al. supplementary material 1

 Unknown (2.0 MB)
2.0 MB
Supplementary materials

Ravikumar et al. supplementary material
Ravikumar et al. supplementary material 2

 Unknown (620 KB)
620 KB
Supplementary materials

Ravikumar et al. supplementary material
Ravikumar et al. supplementary material 3

 Unknown (4.9 MB)
4.9 MB
Supplementary materials

Ravikumar et al. supplementary material
Ravikumar et al. supplementary material 4

 Unknown (1.6 MB)
1.6 MB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed