Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-19T08:15:12.953Z Has data issue: false hasContentIssue false

Whey protein concentrate and skimmed milk powder as encapsulation agents for coffee silverskin extracts processed by spray drying

Published online by Cambridge University Press:  06 May 2024

Letícia Ribeiro Barbosa
Affiliation:
Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-330, Brazil
Júlia d'Almeida Francisquini
Affiliation:
Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-330, Brazil
Ana Flávia Lawall Werneck Cerqueira
Affiliation:
Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-330, Brazil
João Paulo Moreira
Affiliation:
Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-330, Brazil
Luciana Poty Manso dos Santos
Affiliation:
Laboratory of Bioactive Natural Products, Department of Biochemistry, Biological Sciences Institute, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
Elita Scio
Affiliation:
Laboratory of Bioactive Natural Products, Department of Biochemistry, Biological Sciences Institute, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
Rodrigo Stephani
Affiliation:
Department of Chemistry, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-330, Brazil
Ítalo Tuler Perrone*
Affiliation:
Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-330, Brazil
Humberto Moreira Húngaro
Affiliation:
Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-330, Brazil
Mirian Pereira Rodarte
Affiliation:
Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-330, Brazil
*
Corresponding author: Ítalo Tuler Perrone; Email: italotulerperrone@ufjf.br

Abstract

We tested the hypothesis that milk proteins, through microencapsulation, guarantee protection against bioactive substances in coffee silverskin extracts. Therefore, the aim of this study was to carry out technological, nutritional and physicochemical characterisation of a coffee silverskin extract microencapsulated using instant skim milk powder and whey protein concentrate as wall materials. The aqueous extract of coffee silverskin was spray-dried using 10% (w/v) skim milk powder and whey protein concentrate. The samples were characterised by determining the water content, water activity, particle size distribution, colour analysis and total phenolic compound content as well as antioxidant activity using 2,2-diphenyl-radical 1-picrylhydrazyl scavenging methods, nitric oxide radical inhibition and morphological analysis. The product showed water activity within a range that ensured greater stability, and the reduced degradation of the dried coffee silverskin extract with whey protein concentrate resulted in better rehydration ability. The luminosity parameter was higher and the browning index was lower for the encapsulated samples than for the pure coffee silverskin extract. The phenolic compound content (29.23 ± 8.39 and 34.00 ± 8.38 mg gallic acid equivalents/g for the coffee silverskin extract using skimmed milk powder and whey protein concentrate, respectively) and the antioxidant activity of the new product confirmed its potential as a natural source of antioxidant phenolic compounds. We conclude that the dairy matrices associated with spray drying preserved the bioactive and antioxidant activities of coffee silverskin extracts.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of Hannah Dairy Research Foundation

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Calva-Estrada, SJ, Mendoza, MR, García, O, Jiménez-Fernández, VM and Jiménez, M (2018) Microencapsulation of vanilla (Vanilla planifolia Andrews) and powder characterization. Powder Technology 323, 416423.CrossRefGoogle Scholar
Carmo, E, Teodoro, RAR, Félix, PHC, Fernandes, RVB, Oliveira, É, Veiga, TRLA, Borges, SV and Botrel, DA (2018) Stability of spray-dried beetroot extract using oligosaccharides and whey proteins. Food Chemistry 249, 5159.CrossRefGoogle ScholarPubMed
Coimbra, PPS, Cardoso, F and Gonçalves, É (2020) Spray-drying wall materials: relationship with bioactive compounds. Critical Reviews in Food Science and Nutrition 61, 28092826.CrossRefGoogle ScholarPubMed
Costa, ASG, Alves, RC, Vinha, AF, Costa, E, Costa, CSG, Nunes, MA, Almeida, AA, Santos-Silva, A and Oliveira, MBPP (2018) Nutritional, chemical and antioxidant/pro-oxidant profiles of silverskin, a coffee roasting by-product. Food Chemistry 267, 2835.CrossRefGoogle ScholarPubMed
Francisquini, J, Martins, E, Renhe, I, Oliveira, LF, Stephani, R, Perrone, ÍT and Carvalho, A (2020) Particle size distribution applied to milk powder rehydration. Química Nova 43, 226230.Google Scholar
Gemechu, FG (2020) Embracing nutritional qualities, biological activities and technological properties of coffee byproducts in functional food formulation. Trends In Food Science & Technology, [s. l] 104, 235261, out. 2020.CrossRefGoogle Scholar
Gomes, JVP, Oliveira, L, Pereira, SMS, Conceição, A, Anunciação, PC, Souza, E, Perrone, ÍT, Junqueira, MS, Sant'ana, HMP and Della Lucia, CM (2021) Comparison of bioactive compounds and nutrient contents in whey protein concentrate admixture of turmeric extract produced by spray drying and foam mat drying. Food Chemistry 345, 128772.CrossRefGoogle ScholarPubMed
Govindarajan, R, Rastogi, S, Vijayakumar, M, Shirwaikar, A, Rawat, AKS, Mehrotra, S and Pushpangadan, P (2003) Studies on the antioxidant activities ofdesmodium gangeticum. Biological and Pharmaceutical Bulletin 26, 14241427.CrossRefGoogle ScholarPubMed
Lavelli, V, Harsha, PS and Spigno, G (2016) Modelling the stability of maltodextrin encapsulated grape skin phenolics used as a new ingredient in apple puree. Food Chemistry 209, 323331.CrossRefGoogle ScholarPubMed
Livney, YD (2010) Milk proteins as vehicles for bioactives. Current Opinion in Colloid & Interface Science 15, 7383.CrossRefGoogle Scholar
Nzekoue, FK, Angeloni, S, Navarini, L, Angeloni, C, Freschi, M, Hrelia, S, Vitali, LA, Sagratini, G, Vittori, S and Caprioli, G (2020) Coffee silverskin extracts: quantification of 30 bioactive compounds by a new HPLC-MS/MS method and evaluation of their antioxidant and antibacterial activities. Food Research International 133, 109128109138.CrossRefGoogle ScholarPubMed
Rocha, J, Barros, F, Perrone, ÍT, Viana, KWC, Tavares, GM, Stephani, R and Stringheta, PC (2019) Microencapsulation by atomization of the mixture of phenolic extracts. Powder Technology 343, 317325.CrossRefGoogle Scholar
Rutz, JK, Zambiazi, RC, Borges, CD, Krumreich, FD, Luz, S, Hartwig, N and Rosa, C (2013) Microencapsulation of purple Brazilian cherry juice in xanthan, tara gums and xanthan-tara hydrogel matrixes. Carbohydrate Polymers 98, 12561265.CrossRefGoogle ScholarPubMed
Shishir, MRI and Chen, W (2017) Trends of spray drying: a critical review on drying of fruit and vegetable juices. Trends in Food Science & Technology 65, 49–46.CrossRefGoogle Scholar
Supplementary material: File

Barbosa et al. supplementary material

Barbosa et al. supplementary material
Download Barbosa et al. supplementary material(File)
File 384 KB