Skip to main content Accessibility help

Thermal effects on IgM-milk fat globule-mediated agglutination

  • Steffen F. Hansen (a1), Lotte B. Larsen (a1) and Lars Wiking (a1)


The process of agglutination causes firm cream layers in bovine milk, and a functioning agglutination mechanism is paramount to the quality of non-homogenized milks. The phenomenon is not well-described, but it is believed to occur due to interactions between immunoglobulins (Ig) and milk fat globules. For the first time, this paper demonstrates how the process of agglutination can be visualized using confocal laser scanning microscopy, rhodamine red and a fluoresceinisothiocynat-conjugated immunoglobulin M antibody. The method was used to illustrate the effect on agglutination of storage temperature and pasteurization temperature. Storage at 5 °C resulted in clearly visible agglutination which, however, was markedly reduced at 15 °C. Increasing storage temperature to 20 or 37 °C cancelled any detectable interaction between IgM and milk fat globules, whereby the occurrence of cold agglutination was documented. Increasing 20 s pasteurization temperatures from 69 °C to 71 °C and further to 73 °C lead to progressively higher inactivation of IgM and, hence, reduction of agglutination. Furthermore, 2-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis showed that changes in storage temperature caused a redistribution of Ig-related proteins in milk fat globule membrane isolates. Poly-immunoglobulin G receptor was present in milk fat globule preparations stored at cold (4 °C) conditions, but absent at storage at higher temperature (25 °C). The findings provide valuable knowledge to dairy producers of non-homogenized milk in deciding the right pasteurization temperature to retain the crucial agglutination mechanism.


Corresponding author

Authors for correspondence: Lars Wiking, Email:


Hide All
Blans, K, Hansen, MS, Sørensen, LV, Hvam, ML, Howard, KA, Möller, A, Wiking, L, Larsen, LB and Rasmussen, JT (2017) Pellet-free isolation of human and bovine milk extracellular vesicles by size-exclusion chromatography. Journal of Extracellular Vesicles 6, 115.
Caplan, Z, Melilli, C and Barbano, D (2013) Gravity separation of fat, somatic cells, and bacteria in raw and pasteurized milks. Journal of Dairy Science 96, 20112019.
Dickow, JA, Larsen, LB, Hammershøj, M and Wiking, L (2011) Cooling causes changes in the distribution of lipoprotein lipase and milk fat globule membrane proteins between the skim milk and cream phase. Journal of Dairy Science 94, 646656.
Euber, JR, Brunner, JR, Nilsson, S, Mattsson, N and Singher, HO (1984) Reexamination of fat globule clustering and creaming in cow milk. Journal of Dairy Science 67, 28212832.
Fredrick, E, Walstra, P and Dewettinck, K (2009) Factors governing partial coalescence in oil-in-water emulsions. Advances in Colloid and Interface Science 153, 3042.
Frenyo, VL, Butler, JE and Guidry, AJ (1986) The association of extrinsic bovine IgG1, IgG2, SIgA and IgM with the major fractions and cells of milk. Veterinary Immunology and Immunopathology 13, 239254.
Geer, SR and Barbano, DM (2014) The effect of immunoglobulins and somatic cells on the gravity separation of fat, bacteria, and spores in pasteurized whole milk. Journal of Dairy Science 97, 20272038.
Heid, HW and Keenan, TW (2005) Intracellular origin and secretion of milk fat globules. European Journal of Cell Biology 84, 245258.
Honkanen-Buzalski, T and Sandholm, M (1981) Association of bovine secretory immunoglobulins with milk fat globule membranes. Comparative Immunology, Microbiology & Infectious Diseases 44, 329342.
Hood, L, Kronenberg, M and Hunkapiller, T (1985) T cell antigen receptors and the immunoglobulin supergene family review. Cell 40, 225229.
Huppertz, T and Kelly, AL (2006) Physical chemistry of milk fat globules. In Advanced Dairy Chemistry Volume 2, pp. 184190 (Ed. Fox, PF & Sweeney, PLH) , Boston, MA, US: Springer.
Huppertz, T, Kelly, AL and Fox, PF (2009) Milk lipids – composition, origin and properties. In Dairy Fats and Related Products, p. 20 (Ed. Tamime, AY) Hoboken, NJ, US: Blackwell Publishing.
Larsen, LB, Wedholm-Pallas, A, Lindmark-Månsson, H and Andrén, A (2010) Different proteomic profiles of sweet whey and rennet casein obtained after preparation from raw vs. heat-treated skimmed milk. Dairy Science & Technology 90, 641656.
Lombardi, R, Erne, B, Lauria, G, Pareyson, D, Borgna, M, Morbin, M, Arnold, A, Czaplinski, A, Fuhr, P and Schaeren-Wiemers, N et al. (2005) IgM deposits on skin nerves in anti-myelin-associated glycoprotein neuropathy. Annals of Neurology 57, 180187.
Mainer, G, Sánchez, L, Ena, JM and Calvo, M (1997) Kinetic and thermodynamic parameters for heat denaturation of bovine milk IgG, IgA and IgM. Journal of Food Science 62, 10341038.
Miyazaki, Y, Nishimoto, S, Sasaki, T and Sugahara, T (1998) Spermine enhances IgM productivity of human-human hybridoma HB4C5 cells and human peripheral blood lymphocytes. Cytotechnology 26, 111118.
Payens, TAJ, Koops, J and Kerkhof Mogot, MF (1965) Adsorption of euglobulin on agglutinating milk fat globules. Biochimica et Biophysica Acta 94, 576578.
Stadtmueller, BM, Huey-Tubman, KE, López, CJ, Yang, Z, Hubbell, WL and Bjorkman, PJ (2016) The structure and dynamics of secretory component and its interactions with polymeric immunoglobulins. eLife 5, e10640. DOI: 107.554/eLife.10640.
Ustonol, Z and Sypien, C (1997) Heat stability of bovine milk immunoglobulins and their ability to bind Lactococci as determined by an ELISA. Journal of Food Science 62, 12181222.
Ye, A, Singh, H, Taylor, MW and Anema, SG (2004) Interactions of fat globule surface proteins during concentration of whole milk in a pilot-scale multiple-effect evaporator. Journal of Dairy Science 71, 471479.


Thermal effects on IgM-milk fat globule-mediated agglutination

  • Steffen F. Hansen (a1), Lotte B. Larsen (a1) and Lars Wiking (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed